
SPARTA!
Static Program Analysis for Reliable Trusted Apps

http://types.cs.washington.edu/sparta/

Version 0.9.0 (22 April 2013)

Do not distribute.

Contents

1 Introduction 4
1.1 In case of trouble . 4

2 Installation 5
2.1 Requirements . 5
2.2 Install SPARTA . 5
2.3 Run test cases . 6
2.4 Android App Setup . 6

3 Tools 7
3.1 Suspicious API Tool . 7
3.2 Permission Tool . 7
3.3 Android API Tool . 7
3.4 Flow Checker Tool . 7

4 Flow Checker 8
4.1 Overview . 8
4.2 Default Types . 8
4.3 Flow Policy . 9

4.3.1 Semantics of a Flow Policy . 10
4.3.2 Syntax of a Flow Policy File . 10
4.3.3 Using a flow-policy file . 11

4.4 Subtyping . 11
4.5 Conditionals . 12
4.6 Empty Flow Sinks or Flow Sources . 12
4.7 Warning Suppression . 12
4.8 API specifications . 12
4.9 Qualifier polymorphism: @PolyFlowSources and @PolyFlowSinks 13
4.10 Additional Annotations . 13

4.10.1 @DefaultFlow . 13
4.10.2 @ConservativeFlow . 13
4.10.3 @PolyFlow . 13

4.11 Stricter tests . 13
4.12 Miscellaneous . 14

5 How to Annotate an Android App 15
5.1 Flow Checker . 15
5.2 Annotating Application Methods . 15
5.3 Annotating APIs . 15

5.3.1 Methods with Sources . 15

2

5.3.2 Methods with Sinks . 16
5.3.3 Callbacks . 16
5.3.4 Methods that Transform Data . 17

5.4 Common Errors . 17
5.4.1 Forbidden Flow . 17
5.4.2 Incompatible Types . 17
5.4.3 Conditionals . 18
5.4.4 StubParser . 18

6 How to Detect Malware 19
6.1 How to Analyze an Annotated App . 19

6.1.1 Run the Flow Checker . 19
6.1.2 Review the Flow Policy . 19
6.1.3 Review @SuppressWarning Justifications . 19

6.2 How to Analyze an Unannotated App . 20
6.2.1 Summary . 20
6.2.2 Task: set up the tools for the new application . 20
6.2.3 Task: get a basic understanding of the application . 21
6.2.4 Task: write a flow-policy file . 21
6.2.5 Task: check for the most suspicious code locations and API uses 21
6.2.6 Task: see where permissions are used in the application . 22
6.2.7 Task: see what precise APIs are used where in the application 22
6.2.8 Task: ensure that the used APIs are annotated with flow information 23
6.2.9 Task: visualize the existing flow in the application . 23
6.2.10 Task: check the flow in the application . 23
6.2.11 Task: run stricter tests . 24

7 Requirements of the app developer (rules of engagement) 25

8 Notes 27
8.1 JSR 308 and Eclipse . 27

9 SPARTA internals 28

3

Chapter 1

Introduction

SPARTA is a research project at the University of Washington funded by the DARPA Automated Program Analysis
for Cybersecurity (APAC) program.

SPARTA aims to detect certain types of malware in Android applications, or to verify that the app contains no
such malware. SPARTA’s verification approach is type-checking: the developer states a security property, annotates
the source code with type qualifiers that express that security property, then runs a pluggable type-checker [PAC+08,
DDE+11] to verify that the type qualifiers are right (and thus that the program satisfies the security property).

The Checker Framework is a pluggable type-checker that provides the foundation for the SPARTA project. For
more information on pluggable type-systems, please consult the Checker Framework manual at http://types.cs.
washington.edu/checker-framework/.

You can find the latest version of this manual in the sparta-code version control repository, in directory sparta-code/docs.
Alternately, you can find it in a SPARTA release at http://types.cs.washington.edu/sparta/release/, though
that may not be as up-to-date.

1.1 In case of trouble
If you have trouble, please email either sparta@cs.washington.edu (developers mailing list) or
sparta-users@cs.washington.edu (users mailing list) and we will try to help.

4

Chapter 2

Installation

This chapter briefly describes how to install the SPARTA project tools.

2.1 Requirements
Java 7

• .../jdk1.7.0/bin must be on your path.
• JAVA HOME should be set to .../jdk1.7.0.

Ant

• Ensure you have recent versions of ant installed
• ant version 1.8.2 is known to work

Android SDK

• Install the Android SDK to some directory.
• Set ANDROID HOME to that location.
• Download the android-15 target.

If using Eclipse, go to Help → Install New Software and install the Android ADT Plugin (https://dl-ssl.
google.com/android/eclipse) and MercurialEclipse (http://cbes.javaforge.com/update).

Checker Framework

• Follow the installation instructions in the manual: http://types.cs.washington.edu/checker-framework/
current/checkers-manual.html#installation

• Set CHECKERS to checker-frameworkcheckers/

2.2 Install SPARTA
• Download the SPARTA release here: http://types.cs.washington.edu/sparta/release/. (Please do not

publicize this URL.)
• Unpack the archive.
• Google gson is a dependency for the ”-json” targets for projects. Get it from http://code.google.com/
p/google-gson/; create directory sparta-code/lib and unzip gson there. Alternatively, set build property
gson.jar, which defaults to:

5

gson.jar=$basedir/lib/google-gson-2.2.2/gson-2.2.2.jar
• Update SPARTA

The SPARTA project needs to be updated to your development environment, so that the path to the Android SDK
is correct and the correct version of Android is used. (More details about updating a project are available here:
http://developer.android.com/tools/projects/projects-cmdline.html#UpdatingAProject.)To up-
date the project with your Android settings run the following:
ant -buildfile $SPARTA_CODE/build.local.xml
Alternatively, you can run:
$ANDROID_HOME/tools/android update project --path . --target android-15

• To build SPARTA:
export CHECKERS=$HOME/checker-framework/checkers/
ant jar

2.3 Run test cases
As a sanity check of the installation, run

ant all-tests

You should see “BUILD SUCCESSFUL” at the end.

2.4 Android App Setup
This section explains how to setup an Android application for analysis with the SPARTA tools.

1.) Ensure the following environment variables are set.

• CHECKERS pointing to the .../checker-framework/checkers directory
• SPARTA CODE pointing to the .../sparta-code directory
• ANDROID HOME pointing to the .../android-sdk directory

2.) If your Android project does not have a build.xml file, update the project.

$ANDROID_HOME/tools/android update project --path .

3.) Add the SPARTA build targets to the end of the build.xml file, just above </project>.

<property environment="env"/>
<dirname property="checkers_dir" file="${env.CHECKERS}"/>
<basename property="checkers_base" file="${env.CHECKERS}"/>
<dirname property="sparta-code_dir" file="${env.SPARTA_CODE}"/>
<basename property="sparta-code_base" file="${env.SPARTA_CODE}"/>
<import file="${sparta-code_dir}/${sparta-code_base}/build.include.xml" optional="true"/>

6

Chapter 3

Tools

SPARTA contains four independent tools. The first three are used to find potentially malicious code locations in an
Android app. The final tool is used to statically verify information flow properties. All four tools can be invoked via
ant targets; Section 2.4 explains how to install these targets in an Android app.

3.1 Suspicious API Tool
This tool reports uses of potentially dangerous APIs. These include uses of reflection, randomness, thread spawning,
the ACTION VIEW intent, hard-coded strings such as URIs, and so forth. These APIs may be innocuous, but a
human should examine their use. The file src/sparta/checkers/suspicious.astub contains the classes and methods that
are considered suspicious.

ant reportsuspicious

3.2 Permission Tool
This tool indicates every API call in the Android app that might require a permission. The file src/sparta/checkers/per-
mission.astub contains the Android API that has been annotated with @RequiredPermissions and is used by this
tool.

ant reqperms

3.3 Android API Tool
This tool reports uses of Android and other APIs. These APIs are not suspicious in general. However, they do help
the analyst to better understand the structure of the code not just with respect to its standard module structure, but in
terms of how it interacts with Android interfaces.

ant reportapiusage

3.4 Flow Checker Tool
This tool ensures that there is no data flow in the application beyond what is expressed in the given flow policy. A full
description of the Flow Checker is given in Chapter 4.

ant -DflowPolicy=myflowpolicy flowtest

7

Chapter 4

Flow Checker

This chapter gives a brief overview of the Flow Checker, a type-checker that tracks information flow through your
program. It gives a guarantee that there is no information flow beyond what is expressed in the flow policy and type
annotations.

The Flow Checker does pluggable type-checking of an information flow type system. It is implemented using the
Checker Framework. To better understand pluggable type-checking and the Checker Framework, please consult the
Checker Framework manual at http://types.cs.washington.edu/checker-framework/.

4.1 Overview
You write the annotation @FlowSources on a variable’s type to indicate what sensitive sources can affect the variable’s
value. You write the annotation @FlowSinks to indicate where (part of) the value might be output.

As an example, suppose there is a declaration

@FlowSources(FlowSource.LOCATION) @FlowSinks(FlowSink.NETWORK) double latitude;

The @FlowSources(FlowSource.LOCATION) annotation indicates that the value of latitude might have been de-
rived from location information. It does not guarantee that the value came from authentic GPS data, but only sets a
bound on where the information might have come from; this assignment is legal: latitude = 47.6097. Similarly,
the annotation @FlowSinks(FlowSInk.NETWORK) marks that the string latitude might be output to the network. It
is also possible that the data has already been output.

The argument to @FlowSources (and @FlowSinks) is an enum constant, or a set of them to indicate that a
value might combine information from multiple sources (or might flow to multiple locations). FlowSources spec-
ifies data sources such as phone number, location, etc. FlowSinks specifies sinks, such as files, network, and so
on. The types of FlowSources and FlowSinks are listed in the FlowSources.java and FlowSinks.java files in
sparta.checkers.quals.

4.2 Default Types
To reduce the number of annotations needed, default types are used. Table 4.1 shows the default types used by the
flow checker.

The defaults are not applied if the programmer uses annotations. For example, the parameter below is of type
@FlowSources(FlowSource.LOCATION) @FlowSinks(FlowSink.NETWORK) rather than @FlowSources(FlowSource.LITERAL).
Note that @FlowSources means @FlowSources({}) and @FlowSinks means @FlowSinks({}).

public void sendToInternet(
@FlowSources(FlowSource.LOCATION) @FlowSinks(FlowSink.NETWORK) String message){...}

8

Location Default Flow Type

Fields @FlowSources(FlowSource.LITERAL)
Method parameters @FlowSources(FlowSource.LITERAL)
Return values @FlowSources(FlowSource.LITERAL)
null @FlowSources @FlowSinks(FlowSink.ANY)
Literals @FlowSources(FlowSource.LITERAL) @FlowSinks(FlowSink.CONDITIONAL)
Local variables @FlowSources(FlowSource.ANY) @FlowSinks
@FlowSources(α) @FlowSources(α) @FlowSinks(ω), ω is the set of sinks allowed to flow from all sources in α

@FlowSinks(ω) @FlowSources(α) @FlowSinks(ω), α is the set of sources allowed to flow to all sinks in ω

Table 4.1: Default types

The value null has the bottom type (@FlowSinks(FlowSink.ANY) @FlowSources), so that it can be assigned to
any type. For local variables, the default applies to the top level of the local variable type, but not to generic type
arguments and array elements, if any.

The Checker Framework supports flow-sensitive type refinement. Assignments (such as initializers) are used to
refine the type to a more precise one. Thus, in general you do not have to write type annotations on local variables. For
details, see section “Automatic type refinement (flow-sensitive type qualifier inference)” in the Checker Framework
manual.

If the programmer specifies only flow sources, the flow sink is defaulted to be the sinks that the all the specified
flow sources can flow to. This is to say that it is the intersection of the set of sinks each source can flow to. In other
words, if a type is annotated with @FlowSources(α), where α is a set of sources, then the flow sinks are the set ω

where ω is the intersection of sinks B where A → B and A is a flow source in α. For example, if the flow policy
contains the following:

A -> X,Y
B -> Y
C -> Y

then these are equivalent:

@FlowSources(A) == @FlowSources(A) @FlowSinks({X, Y})
@FlowSources(B) == @FlowSources(B) @FlowSinks(Y)
@FlowSources({B,C}) == @FlowSources({B,C}) @FlowSinks(Y)
@FlowSources(A) @FlowSinks(Y) == @FlowSources(A) @FlowSinks(Y)
@FlowSources({A,B}) == @FlowSources({A,B}) @FlowSinks(Y)

Similarly, if the programmer only specifies flow sinks, the flow sources are defaulted to be the sources that are
allowed to flow to all the specified sinks. In other words, if a type is annotated with @FlowSinks(ω), where ω is a set
of sinks, then the flow sources are the set α where α is the intersection of sources A where A→ B and B is a flow sink
in ω. For example, using the same policy file as above, the following are equivalent:

@FlowSinks(X) == @FlowSources(A) @FlowSinks(X)
@FlowSinks(Y) == @FlowSources({A,B,C}) @FlowSinks(Y)

4.3 Flow Policy
A flow policy is a list of all the flows that are permitted to occur in an application. Flow policies are specified in a
flow-policy file that is a list of flow source and flow sink pairs. If a flow is not listed in the flow policy, then it is
forbidden to occur. If no flow policy is specified, then no flows are permitted.

9

4.3.1 Semantics of a Flow Policy
The Flow Checker guarantees that there is no information flow except for what is explicitly permitted by the policy
file. If a user writes a type that is not permitted by the policy file, then the flow checker issues a warning even if all
types in program otherwise typecheck.

For example, this variable declaration

@FlowSource(FlowSource.CAMERA) @FlowSink(NETWORK) Video video = ...

is illegal unless the the policy file contains:

CAMERA -> NETWORK

Here is another example. The flow policy file contains:

ACCOUNTS -> EXTERNAL_STORAGE, FILESYSTEM
ACCELEROMETER -> EXTERNAL_STORAGE, FILESYSTEM, NETWORK

The following variable declarations are permitted:

@FlowSources(FlowSource.ACCOUNTS) @FlowSinks(FlowSink.EXTERNAL_STORAGE) Account acc = ...
@FlowSources(FlowSource.ACCELEROMETER, FlowSource.ACCOUNTS)
@FlowSinks(FlowSink.EXTERNAL_STORAGE, FlowSink.FILE_SYSTEM) int accel = ...

The following definitions would generate “forbidden flow” errors:

@FlowSources(FlowSource.ACCOUNTS) @FlowSinks(@FlowSink.NETWORK) Account acc = ...
@FlowSources({FlowSource.ACCELEROMETER, FlowSource.ACCOUNTS})
@FlowSinks({FlowSink.EXTERNAL_STORAGE, FlowSink.FILESYSTEM, FlowSink.NETWORK})

4.3.2 Syntax of a Flow Policy File
Each line of a policy file specifies a source-to-sink(s) flow(s) that is permitted. So if “A→ B,C” appears in the file,
then information from source A is allowed to flow to sink B or sink C.

For example, MICROPHONE → NETWORK implies that MICROPHONE data is always allowed to flow to NET-
WORK. The source must be a member of the enum sparta.checkers.quals.FlowSources.FlowSource and the
sink must be a member of the enum sparta.checkers.quals.FlowSinks.FlowSink. The source and sink names
should not be preceded by the name of the enumeration which contains them. ANY is allowed just as it is in @Flow-
Sources and @FlowSinks, but empty, {}, is not allowed.

Multiple sources or sinks can appear on the same line if they are separated by commas. For example, these two
policy files have the same meaning:

MICROPHONE -> NETWORK, LOG, DISPLAY

is equivalent to this policy file:

MICROPHONE -> NETWORK
MICROPHONE -> LOG
MICROPHONE -> DISPLAY, NETWORK

The policy file may contain blank lines and comments that begin with a number sign (#) character.

10

4.3.3 Using a flow-policy file
To use a flow-policy file when invoking the Flow Checker from the command line pass it the option:

-AflowPolicy=mypolicyfile

Or if you are using one of the ant targets, you can pass the option to ant:

ant -DflowPolicy=mypolicyfile flowtest

Remember, not specifying a flow policy file is equivalent to not allowing any flows.

4.4 Subtyping

Figure 4.1: Partial qualifier hierarchy for @FlowSources.

Figure 4.2: Partial qualifier hierarchy for @FlowSinks.

As with standard Java types, the type annotation hierarchy indicates which assignments, method calls, and over-
riding are legal. Figure 4.1 shows part of the @FlowSources qualifier hierarchy. The top type is @FlowSources(ANY),
which is shorthand for listing every source. It would be legal to annotate every variable in a program with @FlowSources(ANY),
because every variable is derived from some subset of all flow sources. But, such an annotation would be imprecise.
@FlowSources({}) or @FlowSources() is the bottom type, and may only be applied to variables whose value does
not depend on any sensitive source.

Figure 4.2 shows part of the @FlowSinks qualifier hierarchy. The top type is @FlowSinks({}) or @FlowSinks(),
which indicates that the value is only used locally by the application and never flows to any sensitive sink. The bottom

11

type, @FlowSinks(FlowSinks.ANY), is a value that might be output to any location whatsoever; it can be thought of
as a completely public value.

Note the different subtyping behavior for sources and sinks.

4.5 Conditionals
The Flow Checker considers conditional expressions to be a flow sink. If a variable will be used in a conditional, then
it must have a flow sink of CONDITIONAL. By default, any source is allowed flow through a conditional. That is to
say that ANY→ CONDITIONAL is added to the flow policy by default.

Conditionals are treated this way because they can leak information. For example, the given a flow policy of
USER INPUT→ FILESYSTEM, the following type checks.

@FlowSources(FlowSource.USER_INPUT) @FlowSinks(FlowSink.FILESYSTEM)
int creditCard = getCCNumber();
final int MAX CC NUM = 9999999999999999;
for (int i = 0 ; i < MAX CC NUM ; i++){

if (i == creditCard)
sendToInternet(i);

}

To catch this sort of information leak, pass -Alint=strict-conditional to change the default from ANY →
CONDITIONAL to LITERAL→ CONDITIONAL.

4.6 Empty Flow Sinks or Flow Sources
Programmers should not use @FlowSources({}) and @FlowSinks({}) for any types. These types are only needed
for top/bottom types which are used in the default types: the null literal uses the bottom type in order for it to be
assignable everywhere; local variables use the top type which will be refined by flow sensitivity. Every value should
either flow from a literal or from some sensitive source. Likewise, every value must flow to a sensitive sink or to a
conditional expression. Any variable that does not have a flow source or a flow sink does not actually affect the output
of the program and should therefore be removed.

This may seem overly strict, but a variable without a flow source or flow sink that does affect the output of the
program comes from an abuse of the type system. Most likely a variable with no source or sink would come from an
improperly suppressed warning. Therefore it is necessary to not allow flows from and to nowhere. (The flow policy
ensures this; see section Section 4.3)

Note that this does not mean you must specify both a flow source annotation and a flow sink annotation as explained
in Section 4.2.

4.7 Warning Suppression
Sometimes it might be necessary to suppress warnings or errors produced by the Flow Checker. This can be done by
using the @SuppressWarnings("flow") annotation on a declaration. Because this annotation can be used to subvert
the Flow Checker, its use is considered suspicious. Anytime a warning or error is suppressed, you must write a brief
comment justifying the suppression. @SuppressWarnings("flow") should only be used if there is no way to annotate
the code so that an error or warning does not occur. Most programs should not suppress warnings.

4.8 API specifications
Files in sparta-code/src/sparta/checkers/flowstubfiles provides library annotations. You may need to en-
hance them, if you find that your application uses APIs that are not yet annotated. For details, see section 6.2.8 of this

12

manual, and also chapter “Annotating libraries” in the Checker Framework manual.

4.9 Qualifier polymorphism: @PolyFlowSources and @PolyFlowSinks
Two additional type annotations can be used to annotate polymorphic methods: @PolyFlowSources, @PolyFlowSinks.

To make the type system more expressive, the flow type system supports qualifier polymorphism, via the type
qualifiers @PolyFlowSources and @PolyFlowSinks. These are mostly used when annotating APIs when the specific
flow sources or flow sinks are not known or can vary. See section “Qualifier polymorphism” in the Checker Framework
manual.

4.10 Additional Annotations
Three additional declaration annotations can be used to annotate APIs: @DefaultFlow, @ConservativeFlow, and
@PolyFlow. They change the default annotations (Section 4.2).

The declaration annotations can be used on any declaration: a method, a class, or even a whole package. For
example, the whole android package should use conservative defaults. More specific annotations given in the rest of
the file override these defaults.

4.10.1 @DefaultFlow
An element annotated with @DefaultFlow expresses that an enclosed method’s return type and all parameter types are
@FlowSources(FlowSource.LITERAL) @FlowSinks(FlowSink.CONDITIONAL). As with all library annotations, it
is trusted rather than checked. Thus, it should be used only if an external analysis has determined that it is correct for
the annotated method, class, or package.

4.10.2 @ConservativeFlow
Annotation @ConservativeFlow expresses that each contained method should have the most conservative possible
annotations: @FlowSources() @FlowSinks(ANY) on arguments, and @FlowSources(ANY) @FlowSinks() on re-
turn values. This is so conservative that it is sure to cause a type-checking failure whenever the method is used. When
the analyst encounters such type-checking errors, the analyst can annotate the methods more appropriately. This is a
way of knowing when a program uses a previously-unannotated library.

4.10.3 @PolyFlow
Annotation @PolyFlow expresses that each contained method should be annotated as @PolyFlowSource @PolyFlowSink
for both the return types and all parameters.

4.11 Stricter tests
By default, the flow checker is unsound. After getting the basic checks to pass, the stricter checks should be enabled,
by running ant -Dsound=true flowtest. This two-phase approach was chosen to reduce the annotation effortand
to give two separate phases of the annotation effort. The sound checking enforces invariant array subtyping and type
safety in downcasts.

When strict checks are turned on, a cast (Object []) x, were x is of type Object, will result in a compiler
warning:

[jsr308.javac] ... warning: "@FlowSinks @FlowSources(FlowSource.ANY) Object"
may not be casted to the type "@FlowSinks @FlowSources Object"

13

The reason is that there is not way for the type-checker to verify the component type of the array. There is no static
knowledge about the actual runtime values in the array and important flow could be hidden. The analyst should argue
why the downcast is safe.

Note that the main qualifier of a cast is automatically flow-refined by the cast expression.

Stricter checking also enforces invariant array subtyping, which is needed for sound array behavior in the absence
of runtime checks. Flow inference automatically refines the type of array creation expressions depending on the
left-hand side.

4.12 Miscellaneous
Methods like equals() and toString() that are inherited from Object are the most general possible, so that over-
riding methods can restrict the annotations further. Thus, they return FlowSource.ANY and no flow sinks.

Binary operations like string concatenation or integer addition, result in the least upper bound of the two component
types.

14

Chapter 5

How to Annotate an Android App

This chapter describes best practices for annotating an Android application. In general, only fields and methods
signatures in your own code and in libraries need to be annotated. Usually method bodies do not need to be annotated.

5.1 Flow Checker
An application is fully annotated when the ant flowtest returns no errors. So the typical work flow is to run ant
flowtest, add a few annotations to your own code or to API methods, and then run ant flowtest again. Repeat this
until there are no more errors.

5.2 Annotating Application Methods
Typically, return types should be annotated with just FlowSources so that the FlowSinks can be inferred from the
policy file as explained in Section 4.2. Similarly, parameters should only be annotated with FlowSinks, so that the
FlowSources can be inferred from the policy file. Local variables should not have to be annotated, because their types
can be inferred. Fields must be annotated with FlowSinks or FlowSources, or sometimes both. The guidelines for
annotating API methods described in the next sections also apply to annotating methods in your application.

5.3 Annotating APIs
Stubfiles in sparta-code/src/sparta/checkers/flowstubfiles provides Android and Java library annotations.
You may need to enhance it, if you find that your application uses APIs that are not yet annotated. After chang-
ing a stub file, remember to rebuild sparta.jar (ant jar). Also, the Checker Framework manual has more informa-
tion on stub files. http://types.cs.washington.edu/checker-framework/current/checkers-manual.html#
annotating-libraries

For every API method used by this app (i.e., those output by ant reportapiusage) that does not already appear
in a stub file, read the Javadoc and decide what flow properties the method has. Use this information to annotate the
method. The next few sections have guidelines on how to annotate certain kinds of methods.

To speed up annotating an entire API class, copy the output from Checker Framework’s StubGenerator to the
correct stub file and then annotate the methods. See http://types.cs.washington.edu/checker-framework/
current/checkers-manual.html#stub for more details.

5.3.1 Methods with Sources
If you read the javadoc and the method returns an object from a certain source, then you should annotated the return
with that flow source and FlowSink.ANY. (If @FlowSinks is omitted then it is assumed to be empty which means that

15

the object returned cannot be assigned to a variable with a sink.)
The getParameters method is an example of a method that returns an object with a source.

package android.hardware;
class Camera{

@FlowSources(FlowSource.CAMERA_SETTINGS) @FlowSinks(FlowSink.ANY)
Camera.Parameters getParameters ();

void setParameters (@FlowSources(FlowSource.ANY) @FlowSinks(CAMERA_SETTINGS)
Camera.Parameters params);

}

Camera.Parameters parameters
= mCamera.getParameters();

//Change some parameters
//If the policy file contains: CAMERA_SETTINGS->CAMERA_SETTINGS
//Then the following statement will not give an error
mCamera.setParameters(parameters);

5.3.2 Methods with Sinks
If you read the javadoc for an API method an it sends some parameters to a FlowSink, then the parameters should be
annotated with that flow sink and ANY flow source.

Example annotation

package android.database.sqlite;
class SQLiteDatabase{

public void execSQL (@FlowSinks(FlowSink.DATABASE) @FlowSource(FlowSource.ANY) String sql);
}

Use of the API

@FlowSources(SMS,LITERAL) String getSMSQuery(){..}
String mes = getSMSQuery();
//if SMS,LITERAL->DATABASE is in flow policy
//Then the following statement will not give an error
db.execSQL(mes);

5.3.3 Callbacks
The Android API frequently uses callbacks. These are methods that the developer must implement and register. In
stub files, these callbacks should be annotated with source information and FlowSink.ANY.

An example annotation of a callback method

package android.hardware;
class Camera$PictureCallback{

//data: a byte array of the picture data
void onPictureTaken

(@FlowSource(CAMERA) @FlowSinks(FlowSink.ANY) byte[] data,
@FlowSource(CAMERA) @FlowSinks(FlowSink.ANY) Camera camera);

}

An example implementation of a callback

16

public void onPictureTaken
(@FlowSource(CAMERA) byte[] data, @FlowSource(CAMERA) Camera camera){

//If CAMERA->FILE_SYSTEM is in policy file
//Then the following statement will not give an error
writeToFile(data);

}

5.3.4 Methods that Transform Data
Some methods take the arguments passed, transform them, and then return them. These sorts of methods should
be annotated with @PolyFlowSources @PloyFlowSinks to preserve the flow information. The declaration annota-
tion @PolyFlow can be used instead of annotating all the parameters and return types. See Section 4.10.3 for more
information

Math.min(...) is a good example of these kinds of methods.

package java.lang;
class Math{

@PolyFlow
int min(int i1, int i2);

}

Example use of @PolyFlow.

@FlowSources(FlowSource.LOCATION) int i1 = getLocation();
@FlowSources(FlowSource.NETWORK) int i2 = getLocationForNetwork();
@FlowSources({FlowSource.LOCATION,FlowSource.NETWORK)}) int min = Math.min(i1,i2);

5.4 Common Errors
This section explains four of the errors you are likely to see when annotated your application. This section also gives
advice about how you might correct the error.

5.4.1 Forbidden Flow
Every source-sink pair in your code must be listed in the flow policy or else a forbidden flow error will occur. To
correct a forbidden flow error, add the forbidden flow to the policy file.

For example, fix the error below by adding LITERAL -> FILESYSTEM to the policy file.

NewTest.java:43: error: flow forbidden by flow-policy
test = new @FlowSinks(FlowSink.FILESYSTEM)@FlowSources(FlowSource.LITERAL) TestClass2(fs);

ˆ
found: @FlowSinks(FlowSink.FILESYSTEM) @FlowSources(FlowSource.LITERAL) TestClass2
forbidden flows:

LITERAL -> FILESYSTEM

5.4.2 Incompatible Types
The most common errors are incompatible types. They can be in arguments, assignment, return, etc.

17

Conservative Typing APIs that have not been annotated have been typed so conservatively that they will always
produce incompatible types errors where the required is @FlowSinks(ANY) @FlowSources() or @FlowSinks()
@FlowSources(ANY). These errors can be fixed by annotating the API method; Section 5.3 gives guidelines for anno-
tating APIs. Below is an example of this sort of error.

HelloWorld.java:84: error: incompatible types in argument
.replace(R.id.container, fragment)

ˆ
found : @FlowSinks(CONDITIONAL) @FlowSources(LITERAL) Fragment
required: @FlowSinks(ANY) @FlowSources({}) Fragment

Incompatible Types If the incompatible types error is not from conservative defaulting, then the error must be
fixed by adding or removing annotations in the application. For example, the error below can be fixed by adding
ACCELEROMETER to the FlowSource of the return type.

HelloWorld.java:49: error: incompatible types in return.
return x;

ˆ
found : @FlowSinks(CONDITIONAL) @FlowSources({LITERAL, ACCELEROMETER}) int
required: @FlowSinks(CONDITIONAL) @FlowSources(LITERAL) int

5.4.3 Conditionals
As explained in Section 4.5, any item in a conditional statement must have CONDITIONAL listed as a FlowSink. If a
variable is only annotated with FlowSources and strict conditionals are not used, then CONDITIONAL is added as a
flow sink by default.

For example, if input is a parameter in a method and is annotated with @FlowSinks(FlowSink.NETWORK), the
following error will occur. To fix the error, add CONDITIONAL to the flow sink annotation.

HelloWorld.java:48: error: Conditions are not allowed to depend on flow information.
if(i1 > 2){

ˆ

5.4.4 StubParser
APIs are annotated in stub files. If a stub has a typo or the API method does not exist in the version of Android used.

For example, the error below can be fixed by removing the extra L in the method name.

StubParser: Method isLLowerCase(char) not found in type java.lang.Character

This error can be corrected by removing the extra L in the method name.
The method enableForgroundNdefPush(...) is not defined in android.nfc.NfcAdapter, so to fix the error below,

this method should be removed from the stub file.

StubParser: Method enableForegroundNdefPush(Activity,NdefPushCallback)
not found in type android.nfc.NfcAdapter

18

Chapter 6

How to Detect Malware

This is a brief guide on how to analyze an Android application and find security vulnerabilities. This document gives
a high-level view of the process, including how various tools relate to one another.

For details about how to install and run the code analysis tools, see Chapter 2.

6.1 How to Analyze an Annotated App
Analyzing an annotated app is much simpler than analyzing an unannotated one. Basically, the analysis consists of
answering affirmatively three questions.

1. Does the Flow Checker produce any errors or warnings?
2. Does the flow-policy file match the application description?
3. Does the justification for each @SuppressWarning make sense?

6.1.1 Run the Flow Checker
Does the Flow Checker produce any errors or warnings? A properly annotated app should not produce any warnings
or errors. If it does, this would be grounds for rejection. (You can follow the instructions in subsection 6.2.2 to set up
the app for use with the Flow Checker and then run ant flowtest.)

6.1.2 Review the Flow Policy
Does the flow-policy file match the application description? There should not be any flows that are not explained
in the description. These flows may be explicitly stated, such as “encrypt and sign messages, send them via your
preferred email app.” Or a flow may only be implied, such as “This Application allows the user to share pics with
their contacts.” In the first example, you would expect an EMAIL sink to appear somewhere in the policy file. In the
second, “share” could mean a you would see a Flow Sink of EMAIL, SMS, NETWORK, or something else. Flows
that are only implied in the description could be grounds for rejection if the description is too vague.

6.1.3 Review @SuppressWarning Justifications
Does the justification for every @SuppressWarning make sense? Search for every instance of @SuppressWarnings("flow")
and read the justification comment. Compare the justification to the actual code and determine if it make sense and
should be allowed. No justification comment could be grounds for rejection.

19

6.2 How to Analyze an Unannotated App

6.2.1 Summary
The recommended work flow is:

1. Add lines to build.xml
2. Read Description
3. Check Permissions in AndroidManifest.xml
4. Write Flow Policy
5. Run Tools
6. Annotate Relevant APIs
7. After all errors are gone, run ant -Dstrict flowtest

The tools should be run in the following order.

1. ant reportsuspicious (also runs sparta-code/suspicious.pl)
2. ant reqperms
3. ant reportapiusage
4. ant flowtest

The rest of this chapter gives more details about each step in the analysis process.

6.2.2 Task: set up the tools for the new application
Checking applications

It is required to set three environment variables:

• CHECKERS pointing to the .../checker-framework/checkers directory
• SPARTA CODE pointing to the .../sparta-code directory
• ANDROID HOME pointing to the .../android-sdk directory

The SPARTA project needs to be updated to your development environment, so that the path to the Android SDK
is correct and the correct version of Android is use. (More details about updating a project are available here: http://
developer.android.com/tools/projects/projects-cmdline.html#UpdatingAProject.)To update the project
with your Android settings run the following:

ant -buildfile $SPARTA_CODE/build.local.xml

Alternatively, you can run:

$ANDROID_HOME/tools/android update project --path . --target android-15

Edit the build.xml file of the project under analysis to add the SPARTA build targets at the end, right before
</project>:

<property environment="env"/>
<dirname property="checkers_dir" file="${env.CHECKERS}"/>
<basename property="checkers_base" file="${env.CHECKERS}"/>
<dirname property="sparta-code_dir" file="${env.SPARTA_CODE}"/>
<basename property="sparta-code_base" file="${env.SPARTA_CODE}"/>
<import file="${sparta-code_dir}/${sparta-code_base}/build.include.xml" optional="true"/>

To use Eclipse to look at and build the code, perform these simple steps:

20

• Using Eclipse, import the projects (this requires the app to have a .project and .classpath file)

– Make sure Project Properties → Android → Android version # is checked
– Check that Project Properties → Java Build Path → Libraries → Android version # ap-

pears
– Add the sparta-code project to Project Properties → Java Build Path → Projects

• Compile via command line (ant clean, ant flowtest)
• If it compiles, or the errors are exclusively about annotations, it’s working correctly.

Most Android apps will rely on an auto-generated R.java file in the /gen directory of the project. This will only
be generated if there are no errors in the project. There may be errors in the resources (.../res directory) that could
cause R.java to not be generated.

Additionally, if the app depends on an external .jar file (often located in the lib/ directory), it will compile in
Eclipse but not with Ant. To fix this, in ant.properties, add “jar.libs.dir=lib” (or wherever the .jar is located).

6.2.3 Task: get a basic understanding of the application
Read the description of the application. Look at the AndroidManifest.xml file and:

• Determine which permissions the app uses. Look for “uses-permission” entries to understand the used permis-
sions.

• Compare the used permissions with the description of the application and determine whether or not they are
well justified. If an application uses certain permissions that are not justified in the description, this indicates
suspicious code. (To determine where these permissions are used in the application, see 6.2.6)

• Determine the entry points into the source code. (This may also give a hint about the architecture or overall
modular structure of the application.) Look for “activity”, “intent-filter”, “service”, “receiver”, and “provider”
to see the entry points, intent messages it responds to, etc.

6.2.4 Task: write a flow-policy file
Use your understanding of the App to write a flow-policy file. A full description of Flow Policies can be found
in Section 4.3. You should also familiarize yourself with all the possible sources and sinks; all FlowSources are
members of the enum sparta.checkers.quals.FlowSources.FlowSource and all FlowSinks are members of the
enum sparta.checkers.quals.FlowSinks.FlowSink.

To begin, read the App description, looking for clues about the information flow. For example, if this is a map
app, does the description say anything about sending your location data over the network? If so, then you should add
LOCATION→ NETWORK to the flow-policy file. Where else does the description say LOCATION data can go?

Theoretically you should be able to write a complete Flow Policy from the description if the App does not contain
malware. In practice, you will have to add flows to the policy file as you more fully annotate the app, but you should
make note of what additional flows you had to add.

After you have written the flows that are apparent from the description, you may want to see if the App has any “use
permissions” in the AndroidManifest.xml file that are not listed in the flow policy. (Permissions are not one-to-one
with sinks and sources, but the name of the permission should give a clue about which sources and sinks are involved.)
For example, if the SEND SMS permission is requested, then SMS should be listed as a flow sink somewhere in the
policy file. If this is not the case, do not add it to the policy file, but pay close attention to how this permission is used
in the code.

6.2.5 Task: check for the most suspicious code locations and API uses
Run ant reportsuspicious to get a list of the most suspicious code locations. This target only reports about suspi-
cious APIs that appear in the file: sparta-code/src/sparta/checkers/suspicious.astub. This report provides
the most suspicious code locations and is intended to help localizing malware in an unannotated application.

21

The following example from the suspicious.astub file reports all calls of the invoke method and, additionally,
all constructor calls of the class java.util.Random:

package java.lang.reflect;
class Method {

@ReportCall
public Object invoke(Object obj, Object [] objs) {}

}

package java.util;
@ReportCreation
class Random {}

In addition to running the report checker based on the suspicious.astub file, the reportsuspicious target
executes the script sparta-code/suspicious.pl, which recursively searches for suspicious String patterns (i.e.,
URIs, or IP and MAC addresses) in .java and strings.xml files. Generally, the sparta-code/suspicious.pl
script takes two arguments:

1. root-dir: The directory in which the script recursively searches for the given patterns (built-in or argument#2)
2. pattern (optional): Search pattern to use instead of the built-in ones.

For each match, the script reports the file name, line number, and the found pattern.
The suspicious.astub and suspicious.pl files should be enhanced with additional API uses and String pat-

terns that turn out to be malicious for every analyzed application.

6.2.6 Task: see where permissions are used in the application
Run ant reqperms to see a list of the app’s methods that use calls that require certain Android permissions. You
can use this to gain an understanding of where sensitive information may come from/go to in the application. This
command produces errors like the following:

error: Call additionally requires permissions [android.permission.INTERNET],
but caller only provides []!

You can remove the error by writing @RequiredPermissions(android.Manifest.permission.PERMISSION)
in front of the method header in the source code.

Once all methods in the subject application are correctly annotated, ant reqperms will not issue any warnings.
Grep for @RequiredPermissions to find the required permissions in the application.

Any permission that is required should already be listed in the AndroidManifest.xml file.

6.2.7 Task: see what precise APIs are used where in the application
Run ant reportapiusage to get a report of the used APIs. The reportapiusage target only reports about APIs
that appear in the file: sparta-code/src/sparta/checkers/apiusage.astub. This report is useful for program
comprehension but not intended to provide suspicious code locations. For suspicious API use, see 6.2.5.

The following example from apiusage.astub causes the corresponding checker to report the use of all entities in
the package com.android:

@ReportUse
package com.android;

The apiusage.astub file should be enhanced during and after the analysis of an application — add the entities
that are most crucial to understand the behaviour of an application.

22

6.2.8 Task: ensure that the used APIs are annotated with flow information
Stub files in sparta-code/src/sparta/checkers/flowstubfiles provides Android and Java library annotations.
You may need to enhance it, if you find that your application uses APIs that are not yet annotated. (The more APIs get
annotated, the less work you will have to do in this step for each new app.) You should not annotate libraries that are
unique to your application in flowstubfiles; instead, annotated them in a new *.astub file. You can pass this file to
be used with flowtest or any of the other ant targets.

ant -Dstubs=path/myAnnoLib.astub flowtest

An example:

package android.telephony;

class TelephonyManager {
public @FlowSources(FlowSource.PHONE_NUMBER) String getLine1Number();
public @FlowSources(FlowSource.IMEI) String getDeviceId();

}

The above annotates two methods in class TelephonyManager. It indicates that the getLine1Number function returns
a String which is a phone number. For more examples, look into the stub files. Also, see the manual http://types.
cs.washington.edu/checker-framework/current/checkers-manual.html#annotating-libraries

For every API method used by this app (i.e., those output by ant reportapiusage) that does not already appear
a stub file do the following.

• Read the Javadoc
• Decide what flow properties the method has.
• Add the method to the stub file that corresponds to the class package, with appropriate flow properties expressed

as @FlowSinks(...) and @FlowSources(...) annotations. It would be unusual for an API method to contain
both a @FlowSources and a @FlowSinks annotation.

If according to the description, the method has no flow, then the parameters and return type should be annotated
with @PolyFlowSources @PloyFlowSinks to preserve the flow information.

Note: you have not yet added any annotations to the app itself.

6.2.9 Task: visualize the existing flow in the application
You do not have to run this step — you can skip it if you prefer.

Run ant flowshow to get a report of the existing flow. For every type use in the application, it indicates the
flow sources and sinks for that variable. This is exactly the annotations written in the program, plus possibly some
additional annotations that are inferred by the Checker Framework.

This step does not perform type-checking; it only visualizes the flow information written in the program or libraries
as annotations, or inferred from those annotations.

For an unannotated program, the report will not be informative: it only contains API annotations that are prop-
agated to local variables. The report will become more informative as you add more and more annotations to the
application. So, you can periodically rerun this step.

6.2.10 Task: check the flow in the application
Run ant flowtest on the application. Eliminate each warning in one of two ways.

1. Add annotations to method signatures and fields in the application, as required by the type-checker. This essen-
tially propagates the flow information required by the APIs through the application.

23

2. Use @SuppressWarnings to indicate safe uses that are safe for reasons that are beyond the capabilities of the
type system. Always write a comment that justifies that it is safe.

A prime example is a String literal that should be allowed to be sent over the network. By default, every literal has
@FlowSinks() (i.e., nothing) and @FlowSources().

@SuppressWarnings("flow") // manually verified to not contain secret data
@FlowSinks(FlowSink.NETWORK) String url = "http://bazinga.com/";

Without suppression the assignment raises an error, because string literals are assumed to be annotated with FlowSources(FlowSource.LITERAL).
By adding the suppression, you assert that it’s OK to send this string to the network.

Focus on the most interesting flow sources and try to connect the flow sources and sinks in the application. Instead
of trying to completely annotate only the sources or only the sinks, skim over all the reports and use your intuition
to decide which parts of the application to focus on. Try to focus on the parts with the (most) connections between
sources and sinks.

Most types will only use either a @FlowSources or @FlowSinks annotation. The goal is to find places where you
need both annotations, e.g. to express that information that comes from the camera may go to the network:

@FlowSources(FlowSource.CAMERA)
@FlowSinks(@FlowSink.NETWORK) Picture data;

Such a type connects sources and sinks and one needs to carefully decide whether this is a desired information
flow or not.

• If this is good information flow, then write both the @FlowSources and the @FlowSinks annotations at the same
place. You will not receive any more error messages, but you can find all these places with grep or (better) with
ant flowshow.

• If this is bad information flow, then either leave it unannotated, or annotate it but record both in the source code
and elsewhere that you have found a security flaw.

You can continue to use ant flowshow to visualize the annotation progress.

6.2.11 Task: run stricter tests
Once all warnings were resolved, run ant -Dstricter=true flowtest on the application. Providing the stricter
option enables additional checks that are required for soundness, but would be disruptive to enable initially. In partic-
ular, the tests for casts and array subtyping are stricter. See the discussion in Chapter 4, page 8.

This option will also use the stricter conditional rule. (LITERAL→ CONDITIONAL rather than the relaxed ANY
→ CONDITIONAL)

24

Chapter 7

Requirements of the app developer (rules of
engagement)

The goal of an application developer is to create a safe, functional application — and to write the documentation and
code so that the safety and functionality are immediately obvious. In particular, the code and documentation should
be clear and complete, and the system should pass all the tests that the SPARTA toolset performs. If the application
developer fails to meet any of these objectives, then the application will be rejected from the app store, and the fault
will be with the application developer, not with the app store.

A malicious developer would need to write clear documentation and code, but would attempt to hide malicious
behavior in the app nonetheless. If the documentation or code is not clear, or if the malicious behavior is not well-
hidden, or if the SPARTA tools do not confirm that the code conforms to the documentation, then the malicious
developer has failed in his task.

Note that the malicious developer’s goal is more difficult than just writing malicious code, and is even more difficult
than writing well-hidden malicious code. The reason is that the SPARTA toolset encourages good coding style: poor
style requires more warning suppressions. The SPARTA tools lead a programmer to better, clearer code.

Here are some specific requirements of the app developer:

• Use good style. Code must not be obfuscated. Raw types must not be used. Minimize use of undesirable/un-
sound features such as arrays, casts, heterogeneous collections, and reflection.
Provide source code. Provide a build file (for Ant, Maven, Android, etc.).

• State the intended information flows in the application. This should be expressed both in precise English and
also in a machine-readable format that can be read by the SPARTA tools.
The English description should include how the information flows between parts of the application (the paths
along which information flows), and the conditions under which it flows (such as only after a particular user
action or external trigger). These will eventually be represented in the SPARTA toolset’s file format and checked
by SPARTA, but they are not yet.

• Annotate the application. Write type qualifiers on variables. This is essentially just a restatement of the infor-
mation flows above at a lower and more detailed level.

• Type-check the application. Run the type-checker on its source code. Do not take advantage of any of the
unsound features of the type-checker. (Those features are supported to reduce the workload of people who are
not concerned about an absolute guarantee.) For example, do not skip any portions of the code

• Minimize the number of type-checking failures, and justify each one. A type-checking failure indicates either
a bug (i.e., security flaw) in the application, or an instance of subtle code that is beyond the capabilities of the
type system. In either case, the app developer’s first inclination should be to rewrite the code to be correct and
straightforward.
If rewriting the code is impossible, then every remaining warning should be suppressed with a @SuppressWarnings
annotation. Every @SuppressWarnings annotation requires a clear, compelling justification regarding why the
code is actually correct and safe (even though the type-checker cannot prove this property), and why the code

25

cannot be rewritten to address the warning. This justification should be written in the source code at the location
of the @SuppressWarnings annotation.
An excessive number of type-checker warnings, or missing justifications for warning suppressions, is grounds
for rejection from the app store.

26

Chapter 8

Notes

This chapter is currently disorganized notes that will be incorporated into either this manual or the Checker Framework
manual.

[Note: FlowSources(...) is shorthand noting that the specific flow properties aren’t relevant.]

8.1 JSR 308 and Eclipse
JSR 308 extends the Java language to allow annotations in more locations. Java 8 will include support for this extended
syntax. The Checker Framework builds on a version of OpenJDK that already supports this syntax. However, existing
compilers do not support this syntax and will raise an error. This is an issue in particular if you want to analyze
applications in Eclipse.

Eclipse accepts annotations only in the locations supported by Java 1.5, that is, only declaration locations; examples
are fields, local variables, parameters, and methods (return type annotations go in the same place).

Eclipse won’t accept annotations in locations that were added in JSR 308; added locations include type arguments,
object creation, casts, type parameter bounds, and others. To avoid syntax errors from Eclipse or other Java compilers,
you need to put such annotations in comments. The SPARTA tools will interpret them, but Eclipse and other Java
compilers will ignore them.

For details, see section “Annotations in comments” in the Checker Framework manual.
Sometimes method type argument inference does not interact well with type qualifiers. In such situations, you

might need to provide explicit method type arguments, for which the syntax is as follows:

Collections.</*@FlowSources(...)*/ Object>sort(l, c);

27

Chapter 9

SPARTA internals

This document contains details that are only relevant for people inside the SPARTA team at UW.
The SPARTA team uses four Mercurial repositories: sparta-code for the source code of the SPARTA toolset,

sparta-subjects for test applications (case studies), sparta-meetings for notes about UW team meetings, and
apac-meetings for notes about DARPA meetings.

To get a copy do:

hg clone https://dada.cs.washington.edu/hgweb/sparta-code

and similarly for the other three repositories.
To push your changes to the repository you need to be in the sparta Unix group. Contact Werner or Mike to get

the permission. Also, if you are going to push changes, please add a .hgrc file to your home directory on the server.
The .hgrc file should contain:

[trusted]
users = wmdietl
groups = sparta

This allows emails to be sent when you push changes.
Note that SPARTA as well as the Checker Framework are evolving rapidly. Thus you should periodically get the

latest version of the source code (by running hg fetch) and rebuild the projects.
After installing your copy, try to run ant in sparta-subjects/Sky:

$ ant flowtest

If it gives results like this, you’re ready to work on annotating!

[jsr308.javac] .../sparta-subjects/Sky/src/org/jsharkey/sky/WebserviceHelper.java:308: error: incompatible types.
[jsr308.javac] HttpGet request = new HttpGet(String.format(WEBSERVICE_URL, lat, lon, days));
[jsr308.javac] ˆ
[jsr308.javac] found : @FlowSinks @FlowSources String
[jsr308.javac] required: @sparta.checkers.quals.FlowSinks(sparta.checkers.quals.FlowSinks.FlowSink.NETWORK) @FlowSources String

If you want to add a new application, put it under the sparta-subjects directory.
You may need to get Android source code to get sense of what API returns (or gets) what type of data. See

http://source.android.com/source/index.html You can find the list of all APIs from the android source code
in frameworks/base/api/15.txt - api list for api version 15 (Android 4.0.3) Accessing resource is closely related
to android permissions (some of the resources are not protected with permissions though). Android permission list
is at: http://developer.android.com/reference/android/Manifest.permission.html Hints to add annota-
tions could be permissionmap (which permission is required to call which functions): http://www.android-permissions.
org/permissionmap.html

28

Bibliography

[DDE+11] Werner Dietl, Stephanie Dietzel, Michael D. Ernst, Kıvanç Muşlu, and Todd Schiller. Building and using
pluggable type-checkers. In ICSE’11, Proceedings of the 33rd International Conference on Software
Engineering, pages 681–690, Waikiki, Hawaii, USA, May 25–27, 2011.

[PAC+08] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and Michael D. Ernst. Practical
pluggable types for Java. In ISSTA 2008, Proceedings of the 2008 International Symposium on Software
Testing and Analysis, pages 201–212, Seattle, WA, USA, July 22–24, 2008.

29

