
The Checker Framework Manual

MIT Program Analysis Group
http://groups.csail.mit.edu/pag/jsr308/

July 4, 2008

Version: 0.7.3 (4 Jul 2008)

1 Introduction

The Checker Framework enhances Java’s type system to make it more powerful and useful. This makes it
possible for software developers to detect, and more importantly to prevent, errors in their Java programs.

The Checker Framework supports adding pluggable type systems to the Java language in a backward-
compatible way. Java’s built-in typechecker finds and prevents many errors — but it doesn’t find and
prevent enough errors. The Checker Framework lets you run an additional typechecker as a plug-in to
the javac compiler. Your code stays completely backward-compatible: your code compiles with any Java
compiler, it runs on any JVM, and your coworkers don’t have to use the enhanced type system if they don’t
want to. You can check only part of your program, and type inference tools exist to help you annotate your
code.

A type system designer uses the Checker Framework to define type qualifiers and their semantics, and
a compiler plug-in (a “checker”) enforces the semantics. Programmers can write the type qualifiers in
their programs and use the plug-in to detect or prevent errors. The Checker Framework is useful both to
programmers who wish to write error-free code, and to type system designers who wish to evaluate and
deploy their type systems.

This manual also documents 5 checkers that are built using the Checker Framework and are distributed
with it. These checkers find errors or verify their absence.

1. the Nullness checker for null pointer errors (see Section 3)
2. Interning checker for equality testing and interning errors (see Section 4)
3. the Javari checker for mutation errors (incorrect side effects), based on the Javari type system (see

Section 5)
4. the IGJ checker for mutation errors (incorrect side effects), based on the IGJ type system (see Section 6)
5. the Basic checker can check the type hierarchy for any annotation, without the type system designer

writing any code (see Section 7)

This manual is organized as follows.

• Section 1 overviews the Checker Framework and describes how to install it (Section 1.1).
• Section 2 describes how to use a checker.
• The next sections are user manuals for the Nullness (Section 3), Interning (Section 4), Javari (Section 5),

IGJ (Section 6), and Basic (Section 7) checkers.
• Section 8 describes an approach for annotating external libraries.
• Section 9 describes how to write a new checker using the Checker Framework.

This manual focuses on how to use the checkers and the framework. The Javadoc API documentation
of the Checker Framework and the checkers are available at http://pag.csail.mit.edu/jsr308/current/doc/.

1

The technical paper “Practical pluggable types for Java” [PAC+08] (http://people.csail.mit.edu/mernst/pubs/
pluggable-checkers-issta2008.pdf) gives more technical detail about many aspects of the Checker Framework
and its implementation. The technical paper also describes a few features that are part of the distribution
but are not yet documented in this manual. Finally, the technical paper describes case studies in which each
of the checkers found previously-unknown errors in real software.

This document uses the terms “checker”, “checker plugin”, “type-checking compiler plugin”, and “anno-
tation processor” as synonyms.

1.1 Installation

1.1.1 The shortest instructions

To install the Checker Framework and the checkers that accompany it, simply place the checkers.jar file
on your classpath. That’s all there is to it! (Note: You must have previously installed the JSR 308 javac

compiler.)

1.1.2 The short instructions (for Linux only)

The following commands install the JSR 308 javac compiler and the Checker Framework, or update an
existing installation. It currently works only on Linux, and is experimental. For more details, or if anything
goes wrong, see the comments in the Makefile-jsr308-install file.

1. Execute the following commands:
cd

wget -nv -N http://groups.csail.mit.edu/pag/jsr308/current/Makefile-jsr308-install

make -f Makefile-jsr308-install

2. Set some environment variables according to the instructions at the top of file Makefile-jsr308-install.

1.1.3 The longer instructions

The following instructions give detailed steps for installing the Checker Framework.

1. Download and install the JSR 308 implementation; follow the instructions at http://groups.csail.mit.

edu/pag/jsr308/current/README-jsr308.html#installing. This creates a langtools directory.
2. Download the Checker Framework distribution zipfile from http://groups.csail.mit.edu/pag/jsr308/current/

jsr308-checkers.zip, and unzip it to create a checkers directory. We recommend that the checkers direc-
tory and the langtools directory be siblings. Example commands:

cd ~/jsr308

wget http://groups.csail.mit.edu/pag/jsr308/current/jsr308-checkers.zip

unzip jsr308-checkers.zip

3. Edit property compiler.lib in checkers/build.properties.
4. Add to your classpath: $HOME/jsr308/jdk1.7.0/lib/tools.jar and $HOME/jsr308/checkers/checkers.jar. (If

you do not do this, you will have to supply the -cp option whenever you run javac and use a checker
plugin.) Example commands:

export CLASSPATH=${CLASSPATH}:$HOME/jsr308/jdk1.7.0/lib/tools.jar:$HOME/jsr308/checkers/checkers.jar

5. Test that everything works:

• Run ant all-tests in the checkers directory:
ant all-tests

• Run the Nullness checker examples (see Section 3.5).

2

JSR 308 extends the Java language to permit annotations to appear on types, as in List<@NonNull String>.
This change is planned to be part of the Java 7 language.) We recommend that you write annotations in
comments, as in List</*@NonNull*/ String> (see Section 2.1). The JSR 308 compiler still reads such annota-
tions, but this syntax permits you to use a compiler other than the JSR 308 compiler. For example, you can
compile your code with a Java 5 compiler, and you can use a checker as an external tool in an IDE such as
Eclipse.

1.1.4 Building from source

Building (compiling) the checkers and framework from source creates the checkers.jar file. A pre-compiled
checkers.jar is included in the distribution, so building it is optional. It is mostly useful for people who are
developing compiler plug-ins (type-checkers). If you only want to use the compiler and existing plug-ins, it
is sufficient to use the pre-compiled version.

1. Edit checkers/build.properties file so that the compiler.lib property specifies the location of the JSR 308
javac.jar library. (If you also installed the JSR 308 compiler from source, and you made the checkers

and langtools directories siblings, then you don’t need to edit checkers/build.properties.)
2. Run ant in the checkers directory:

cd checkers

ant

2 Using a checker

Finding bugs with a checker plugin is a two-step process:

1. The programmer writes annotations, such as @NonNull and @Interned, that specify additional information
about Java types. (Or, the programmer uses an inference tool to automatically insert annotations in
his code: see Sections 3.4 and 5.2.) It is possible to annotate only part of your code: see Section 2.3.

2. The checker reports whether the program contains any erroneous code — that is, code that is incon-
sistent with the annotations.

2.1 Writing annotations

The syntax of type qualifier annotations is specified by JSR 308 [Ern07]. Ordinary Java permits annotations
on declarations. JSR 308 permits annotations anywhere that you would write a type, including generics and
casts. You can also write annotations to indicate type qualifiers for array levels and receivers. Here are a
few examples:

@Interned String intern() { ... } // return value

int compareTo(@NonNull String other) { ... } // parameter

String toString() @ReadOnly { ... } // receiver ("this" parameter)

@NonNull List<@Interned String> messages; // generics: non-null list of interned Strings

@NonNull String[@Interned] messages; // arrays: non-null array of interned Strings

myDate = (@ReadOnly Date) readonlyObject; // cast

2.1.1 Writing annotations in comments for backward compatibility

Sometimes, your code needs to be compilable by people who are not using the JSR 308 compiler.

Annotations in comments A Java 4 compiler does not permit use of annotations, and a Java 5 compiler
only permits annotations on declarations (but not on generic arguments, casts, the receiver, etc.).

For backward compatibility, you may write any annotation inside a /*. . . */ Java comment, as in List</*@NonNull*/

String>. The JSR 308 compiler treats the code exactly as if you had not written the /* and */. In other

3

words, the JSR 308 compiler will recognize the annotation, but your code will still compile with pre-JSR-308
compilers.

In a single program, you may write some annotations in comments, and others without comments.
The compiler ignores any comment that does not appear to contain exactly one annotation.
By default, the compiler ignores any comment that contains spaces at the beginning or end, or between the

@ and the annotation name. This feature enables backward compatibility with code that contains comments
that start with @ but are not annotations. (The ESC/Java [FLL+02], JML [LBR06], and Splint [Eva96]
tools all use “/*@” or “/* @” as a comment marker.) Compiler flag -Xspacesincomments causes the compiler
to parse annotation comments even when they contain spaces. You may need to use -Xspacesincomments if
you use Eclipse’s “Source > Correct Indentation” command, since it inserts space in comments. But the
annotation comments are less readable with spaces, so you may wish to disable inserting spaces: in the
Formatter preferences, in the Comments tab, unselect the “enable block comment formatting” checkbox.

Import statements When writing source code with annotations, it is more convenient to write a short
form such as @NonNull instead of @checkers.nullness.quals.NonNull. There are two ways to do this.

• Write an import statement like: import checkers.nullness.quals.*;

A potential disadvantage of this is that everyone who compiles the code (even using a non-JSR-308
compiler) must have the annotation definitions (e.g., the checkers.jar file) on their classpath. The
reason is that a Java compiler issues an error if an imported package is not on the classpath.

• When you compile the code, set the shell environment variable jsr308 imports. This permits your code
to compile whether or not the JSR 308 compiler is being used.
In bash, you could write export jsr308 imports=’checkers.nullness.quals.*’, or prefix the javac command
by jsr308 imports=’checkers.nullness.quals.*’ . Alternately, you can set the system variable via the javac
command line argument -J-Djsr308 imports="checkers.nullness.quals.*".
You can specify multiple packages separated by the classpath separator (same as the file path separator:
; for Windows, and : for Unix and Mac.). For example, to implicitly import the Nullness and Interning
qualifiers, set jsr308 imports to checkers.nullness.quals.*:checkers.interning.quals.*.

2.2 Running a checker

To run a checker plugin, run the JSR 308 compiler javac as usual, but pass the -typeprocessor plugin class

command-line option. Two concrete examples (using the Nullness checker) are:

javac -typeprocessor checkers.nullness.NullnessChecker MyFile.java

javac -typeprocessor checkers.nullness.NullnessChecker -sourcepath checkers/jdk/nullness/src MyFile.java

For a discussion of the -sourcepath argument, see Section 8.1.3.
You can always compile the code without the -typeprocessor command-line option, but in that case no

checking of the type annotations is performed.

2.2.1 Ant task

If you use the Ant build tool to compile your software, then you can add an Ant task that runs a checker.
We assume that your Ant file already contains a compilation target that uses the javac task. Duplicate that
target, then modify it slightly as indicated in this example:

<property environment="env"/>

<target name="check-interning" depends="clean">

<javac ...

fork="yes"

executable="${env.HOME}/jsr308/jdk1.7.0/bin/javac">

<compilerarg value="-version"/>

<compilerarg line="-target 5"/>

4

<compilerarg line="-processor checkers.interning.InterningChecker"/>

...

</javac>

</target>

The property target makes environment variables (such as your home directory) available to Ant.
In the example, the target is named check-interning, but you can name it whatever you like.
The target assumes the existence of a clean target that removes all .class files. That is necessary because

Ant’s javac target doesn’t re-compile .java files for which a .class file already exists.
The executable and fork fields of the javac task ensure that an external javac program is called. Otherwise,

Ant will run javac via a Java method call, and there is no guarantee that it will get the JSR 308 version.
The -version compiler argument is just for debugging; you may omit it.
The -target 5 compiler argument is optional, if you use Java 5 in ordinary compilation when not per-

forming pluggable type-checking.
The -processor ... compiler argument indicates which checker to run. You can supply additional argu-

ments to the checker as well.

2.2.2 Eclipse

There are two ways to run a checker from within the Eclipse IDE: via Ant or using an Eclipse plug-in.

Using an Ant task Add an Ant target as described in Section 2.2.1. You can run the Ant target by
executing the following steps (instructions copied from http://help.eclipse.org/help31/index.jsp?topic=/org.

eclipse.platform.doc.user/gettingStarted/qs-84 run ant.htm):

1. Select build.xml in one of the navigation views and choose Run As > Ant Build... from its context
menu.

2. A launch configuration dialog is opened on a launch configuration for this Ant buildfile.
3. In the Targets tab, select the new ant task (e.g., check-interning).
4. Click Run.
5. The Ant buildfile is run, and the output is sent to the Console view.

Eclipse plug-in A prototype Eclipse plug-in for running a checker is available at http://groups.csail.mit.

edu/pag/jsr308/eclipse/. The website contains instructions for installing and using the plug-in. The plug-in
is experimental now, but some people have used it successfully (and we have fixed all bugs that have been
reported so far).

2.3 Checking partially-annotated programs: handling unannotated code

Sometimes, you wish to type-check only part of your program. You might focus on the most mission-critical
or error-prone part of your code. When you start to use a checker, you may not wish to annotate your entire
program right away. You may not have source code (or enough knowledge to annotate) the libraries that
your program uses.

If annotated code uses unannotated code, then the checker may issue warnings. For example, the Nullness
checker (Section 3) will warn whenever an unannotated method result is used in a non-null context:

@NonNull myvar = unannotated_method(); // WARNING: unannotated_method may return a null value

If the call can return null, you should fix the bug in your program by removing the @NonNull annotation in
your own program.

If the library call never returns null, there are several ways to eliminate the compiler warnings.

1. Annotate unannotated method in full. This approach provides the the strongest guarantees, but may
require you to annotate additional methods that unannotated method calls.

5

2. Annotate only the signature of unannotated method, and suppress warnings in its body (see Section 2.4).
3. Suppress all warnings related to uses of unannotated method (see Section 2.4). Since this can suppress

more warnings than you may expect, it is usually better to annotate at least the method’s signature.
If you choose the boundary between the annotated and unannotated code wisely, then you only have
to annotate the signatures of a few classes/methods (e.g., the public interface to a library or package).

Section 8 discusses adding annotations to signatures when you do not have source code available. Sec-
tion 2.4 discusses suppressing warnings.

If you annotate additional libraries, please share them with us so that we can distribute the annotations
with the Checker Framework; see Section 2.9.

2.4 Suppressing warnings

You may wish to suppress checker warnings because of unannotated libraries or un-annotated portions of
your own code, because of application invariants that are beyond the capabilities of the type system, because
of checker limitations, because you are interested in only some of the guarantees provided by a checker, or
for other reasons. You can suppress warnings via

• the @SuppressWarnings annotation,
• the checkers.skipClasses Java property,
• the javac -Alint command-line option, or
• not using the -typeprocessor switch to javac.

You can suppress specific errors and warnings by use of the @SuppressWarnings("annotationname ") annotation,
for example @SuppressWarnings("interning"). This may be placed on program elements such as a class, method,
or local variable declaration. It is good practice to suppress warnings in the smallest possible scope. For
example, if a particular expression causes a false positive warning, you should extract that expression into a
local variable and place a @SuppressWarnings annotation on the variable declaration. As another example, if you
have annotated the signatures but not the bodies of the methods in a class or package, put a @SuppressWarnings

annotation on the class declaration or on the package’s package-info.java file.
You can suppress all errors and warnings at all uses of a given class. Set the checkers.skipClasses Java

property to a regular expression that matches classes for which warnings and errors should be suppressed.
For example, if you use “-Dcheckers.skipClasses=^java\.” on the command line when invoking javac, then the
checkers will suppress all warnings within those classes, all warnings relating to invalid arguments, and all
warnings relating to incorrect use of the return value. (Note that if your javac is a script rather than a
binary, it may not support JVM flags such as -D; in that case, you may need to edit javac script itself to pass
the -D flag. This is a flaw in the OpenJDK build process, which we will try to correct in a future release.)

You can suppress an entire class of warnings via javac’s -Alint command-line option. The -Alint option
uses the same syntax as javac’s -Xlint option. Following -Alint=, write a list of option names. If the
option name is preceded by a hyphen (-), that disables the option; otherwise it enables it. For example:
-Alint=-dotequals causes the Interning checker (Section 4) not to output advice about when a.equals(b) could
be replaced by a==b.

You can also compile parts of your code without use of the -typeprocessor switch to javac. No checking is
done during such compilations.

Finally, some checkers have special rules. For example, the Nullness checker (Section 3) uses assert

statements that contain null checks to suppress warnings (Section 3.6).

2.5 Qualifier polymorphism

The Checker Framework supports type qualifier polymorphism for methods, which permits a single method
to have multiple different qualified type signatures.

A polymorphic qualifier’s definition is marked with @PolymorphicQualifier. For example, @PolyNull is a poly-
morphic type qualifier for the Nullness type system:

6

@PolymorphicQualifier

public @interface PolyNull { }

A method written using a polymorphic qualifier conceptually has multiple versions: in each version, every
instance of the polymorphic qualifier has been conceptually replaced by one of the other qualifiers. As an
example of the use of @PolyNull, method Class.cast returns null if and only if its argument is null:

@PolyNull T cast(@PolyNull Object obj) { ... }

This is like writing:

@NonNull T cast(@NonNull Object obj) { ... }

@Nullable T cast(@Nullable Object obj) { ... }

except that the latter is not legal Java, since it defines two methods with the same Java signature.
The method body must type-check with all signatures, and a method call is permitted if it type-checks

under any signature.

2.6 The effective qualifier on a type

A checker sometimes treats a type as having a slightly different qualifier than what is written on the type —
especially if the programmer wrote no qualifier at all. The following steps determine the effective qualifier
on a type — the qualifier that the checkers treat as being present.

1. If a type is explicitly annotated in the source code, that qualifier is used.
2. The type system adds implicit qualifiers. Implicit qualifiers are built into a type system, and cannot

be overridden (or redundantly stated) by a user. Example 1: In the Nullness type system, enum values
are never null, nor is a method receiver. Example 2: In the Interning type system, string literals and
enum values are always interned. Implicit qualifiers are added by the type system’s type factory class
(Section 9.2), whose documentation should explain all of the type system’s implicit qualifiers.

3. If there is still no qualifier on a type, then a default qualifier may be applied; see Section 2.6.1. This
step is implemented by the QualifierDefaults class.
At this point, every type has a qualifier.

4. Every qualified type may be refined — treated as a subtype of how it was declared or defaulted.
This refinement is always sound and has the effect of eliminating false positive error messages. See
Section 2.6.2. Type qualifier refinement is implemented by the Flow class.

Most readers can skip this section on first reading, because you will probably find the system simply
works as you would prefer, without forcing you to write too many qualifiers in your program.

2.6.1 Default qualifier for unannotated types

A programmer can cause unannotated references to be treated as if they had a default annotation.
The default for unannotated references is sometimes determined by the type system; in such cases,

specifying a default is not sensible. For example, the Interning type system has unqualified types and
@Interned types; no different meaning for unannotated types may be specified. However, the Nullness type
system has @Nullable types and @NonNull types, with no built-in meaning for unannotated types; a user may
specify a default qualifier.

The user specifies a default qualifier by writing the @DefaultQualifier annotation on a package (via the
package-info.java file), class, method, or variable declaration. The argument to @DefaultQualifier is the fully
qualified String name of an annotation, and its optional second argument indicates where the default applies.
If the second argument is omitted, the specified annotation is the default in all locations. See the Javadoc
of DefaultQualifier for details.

The user could specify multiple default qualifiers by writing @DefaultQualifiers annotations in all the loca-
tions that accept @DefaultQualifier. DefaultQualifiers accept an array of DefaultQualifier arguments.

7

This example shows @DefaultQualifier and a @DefaultQualifiers annotations for the Nullness type system
(Section 3) and the IGJ type system (Section 6):

@DefaultQualifiers({

@DefaultQualifier("checkers.nullness.quals.NonNull"),

@DefaultQualifier("checkers.igj.quals.Mutable")

})

class MyClass {

public boolean compile(File myFile) {// myFile type "@NonNull @Mutable File"

if (!myFile.exists()) // no warning: myFile is non-null

return false;

@Nullable File srcPath = ...; // must annotate to specify "@Nullable File"

...

if (srcPath.exists()) // warning: srcPath might be null

...

}

@DefaultQualifier("checkers.igj.quals.ReadOnly")

public boolean isJavaFile(File myfile) { // myFile type "@NonNull @ReadOnly File"

...

}

}

2.6.2 Automatic type refinement (flow-sensitive type qualifier inference)

In order to reduce the burden of annotating types in your program, the checkers soundly treat certain
variables and expressions as having a subtype of their declared or defaulted (Section 2.6.1) type. This
functionality never introduces unsoundness or causes an error to be missed: it merely suppresses false
positive warnings.

By default, all checkers, including new checkers that you write, can take advantage of this functionality.
Most of the time, users don’t have to think about, and may not even notice, this feature of the framework.
The checkers simply do the right thing even when a programmer forgets an annotation on a local variable,
or when a programmers writes an unnecessarily general type in a declaration.

If you are curious or want more details about this feature, then read on.
As an example, the Nullness checker (Section 3) can automatically determine that certain variables are

non-null, even if they were explicitly or by default annotated as nullable. A variable or expression can be
treated as @NonNull from the time that it is either assigned a non-null value or checked against null (e.g., via
an assertion, if statement, or being dereferenced), until it might be re-assigned (e.g., via an assignment that
might affect this variable, or via a method call that might affect this variable).

As with explicit annotations, the implicitly non-null types permit dereferences and assignments to ex-
plicitly non-null types, without compiler warnings.

Consider this code, along with comments indicating whether the Nullness checker (Section 3) issues a
warning. Note that the same expression may yield a warning or not depending on its context.

// Requires an argument of type @NonNull String

void parse(@NonNull String toParse) { ... }

// Argument does NOT have a @NonNull type

void lex(String toLex) {

parse(toLex); // warning: toLex might be null

if (toLex != null) {

parse(toLex); // no warning: toLex is known to be non-null

}

parse(toLex); // warning: toLex might be null

toLex = new String(...);

parse(toLex); // no warning: toLex is known to be non-null

}

8

If you find instances where you think a value should be inferred to have (or not have) a given annotation,
but the checker does not do so, please submit a bug report (see Section 2.9) that includes a small piece of
Java code that reproduces the problem.

Type inference is never performed for method parameters of non-private methods and for non-private
fields, because unknown client code could use them in arbitrary ways. The inferred information is never
written to the .class file as user-written annotations are.

The inference indicates when a variable can be treated as having a subtype of its declared type — for
instance, when an otherwise nullable type can be treated as a @NonNull one. The inference never treats a
variable as a supertype of its declared type (e.g., an expression of @NonNull type is never inferred to be treated
as possibly-null).

2.7 What the checker guarantees

A checker can guarantee that a particular property holds throughout the code. For example, the Nullness
checker (Section 3) guarantees that every expression whose type is a @NonNull type never evaluates to null. The
Interning checker (Section 4) guarantees that every expression whose type is an @Interned type evaluates to
an interned value. The checker makes its guarantee by examining every part of your program and verifying
that no part of the program violates the guarantee.

There are some limitations to the guarantee.

• Native methods and reflection can behave in a manner that is impossible for a compiler plugin to check.
Such constructs they may violate the property being checked. Similarly, deserialization and cloning
can create objects that could not result from normal constructor calls, and that therefore may violate
the property being checked.

• A compiler plugin can check only those parts of your program that you run it on. If you compile some
parts of your program without the -typeprocessor switch or with the checkers.skipClasses property (in
other words, without running the checker), or if you use the @SuppressWarnings annotation to suppress
some errors or warnings, then there is no guarantee that the entire program satisfies the property being
checked. An analogous situation is using an external library that was compiled without being checked
by the compiler plugin.

• Your code should pass the Java compiler without errors or warnings. In particular, your code should
use generic types, with no uses of raw types. Misuse of generics, including casting away generic types,
can cause other errors to be missed.

• The Checker Framework does not yet support annotations on intersection types (see JLS §4.9). As a
result, checkers cannot provide guarantees about intersection types.

• Specific checkers may have other limitations; see their documentation for details.

A checker can be useful in finding bugs or in verifying part of a program, even if the checker is unable to
verify the correctness of an entire program.

2.8 Troubleshooting

If you get the error

com.sun.tools.javac.code.Symbol$CompletionFailure: class file for com.sun.source.tree.Tree not found

then file tools.jar is not on your classpath; see the installation instructions (Section 1.1).
If you get an error such as

package checkers.nullness.quals does not exist

despite no apparent use of import checkers.nullness.quals.*; in the source code, then perhaps jsr308 imports

is set as a Java system property, a shell environment variable, or a command-line option (see Section 2.1.1).
You can solve this by unsetting the variable/option, or by ensuring that the checkers.jar file is on your
classpath.

9

2.8.1 Known problems

• The framework currently does not honor annotated type variables (e.g., @NonNull T).

2.9 How to report problems

If you have any problems with any checker, or with the Checker Framework, please let us know at jsr308-bugs@lists.csail.mit.edu.
In addition to bug reports, we welcome suggestions, annotated libraries, bug fixes, new features, new checker
plugins, and other improvements.

Please ensure that your bug report is clear and that it is complete. Otherwise, we may be unable to
understand it or to reproduce it, either of which would prevent us from fixing the bug. Your bug report will
be most helpful if you:

• Indicate exactly what you did. Show the exact commands (don’t merely describe them in words).
Don’t skip any steps.

• Include all files that are necessary to reproduce the problem. This includes every file that is used by
any of the commands you reported, and possibly other files as well.

• Indicate exactly what the result was (don’t merely describe it in words). Also indicate what you
expected the result to be — remember, a bug is a difference between desired and actual outcomes.

• Indicate which version of the JSR 308 compiler and Checker Framework you are using. You can
determine the JSR 308 version by running javac -version.

2.10 Credits and changelog

The Checker Framework distribution was developed in the MIT Program Analysis Group. The Checker
Framework was implemented by Matthew M. Papi and Mahmood Ali. The nullness checker was implemented
by Matthew M. Papi. The interning checker was implemented by Matthew M. Papi. The Javari checker was
implemented by Telmo Correa. The IGJ checker was implemented by Mahmood Ali. The basic checker was
implemented by Matthew M. Papi. Many users have provided valuable feedback.

Differences from previous versions of the checkers and framework can be found in the changelog-checkers.txt

file. This file is included in the checkers distribution and is also available on the web at http://groups.csail.

mit.edu/pag/jsr308/current/changelog-checkers.txt.

3 Nullness checker

If the Nullness checker issues no warnings for a given program, then running that program will never throw
a null pointer exception. This guarantee enables a programmer to prevent errors from occurring when his
program is run. See Section 3.6 for a caveat to the guarantee.

Four qualifiers are part of the Nullness type system: @NonNull, @Nullable, @PolyNull, and @Raw. For a description
of @PolyNull, see Section 2.5.

3.1 Annotating your code with @NonNull and @Nullable

In order to perform checking, you must annotate your code. You can write the @NonNull type annotation,
which indicates a type that does not include the null value, or the @Nullable type annotation, which indicates
a type that does include null. Unannotated references are treated as if they had a default annotation; see
Section 3.2.

A variable of type Boolean always has one of the values TRUE, FALSE, or null. By contrast, a variable of type
@NonNull Boolean always has one of the values TRUE or FALSE — never null. Dereferencing an expression of type
@NonNull Boolean can never cause a null pointer exception.

The checker issues a warning in two cases:

10

Figure 1: Type hierarchy for the Nullness type system. Java’s Object is expressed as @Nullable Object.
Programmers can omit most type qualifiers, because the default annotation (Section 3.2) is usually correct.

1. When an expression of non-@NonNull type is dereferenced, because it might cause a null pointer exception.
2. When an expression of @NonNull type might become null, because it is a misuse of the type: the null

value could flow to a dereference that the checker does not warn about.

This example shows both sorts of problems:

Object obj; // might be null

@NonNull Object nnobj; // never null

...

obj.toString() // checker warning: dereference might cause null pointer exception

nnobj = obj; // checker warning: nnobj may become null

Parameter passing and return values are checked analogously to assignments.
You can control the behavior of the Nullness checker via the -Alint options flow, cast, and cast:redundant.

3.2 Default annotation

As noted in Section 3.1, you can write @NonNull and @Nullable type annotations. Unannotated references are
treated as if they had a default annotation (see Section 2.6.1, which also gives an example of how to specify
a default by use of the @DefaultQualifier annotation).

There are three possible defaults:

• @Nullable: Unannotated types are regarded as possibly-null, or nullable. This default is backward-
compatible with Java, which permits any reference to be null. You can activate this default by writing
a @DefaultQualifier("checkers.nullness.quals.Nullable") annotation on a class or method declaration. If
you write no @DefaultQualifier annotation, then the checker currently uses this default.

• @NonNull: Unannotated types are treated as non-null. You can activate this default via the @DefaultQualifier("checkers.nullness.quals.NonNull")

annotation.
• Non-null except locals (NNEL): Unannotated types are treated as @NonNull, except that the unannotated

raw type of a local variable is treated as @Nullable. (Any generic arguments to a local variable still default
to @NonNull.) You can activate this default via the @DefaultQualifier(value="checkers.nullness.quals.NonNull",

types={DefaultLocation.ALL EXCEPT LOCALS}) annotation.
The NNEL default leads to the smallest number of explicit annotations in your code [PAC+08]. It is
what we recommend, and the current default default.

3.3 @Raw annotation for partially-initialized objects

During execution of a constructor, every field of non-primitive type starts out with the value null. If the
field has @NonNull type, the value null violates the type. If the constructor makes a method call (passing this

as a parameter or the receiver), then the called method could observe the object in an illegal state.
The @Raw type annotation represents a partially-initialized object. If a reference has @Raw type, then all

fields fields are treated as @Nullable. Within the constructor, this has @Raw type and can only be passed to
methods when the corresponding parameter is annotated with @Raw. Similar restrictions apply to assigning
this to a field.

11

The name “raw” comes from a research paper that proposed this approach [FL03]. The @Raw annotation
has nothing to do with the raw types of Java Generics.

3.4 Inference of @NonNull and @Nullable annotations

It can be tedious to write annotations in your code. Two tools exist that can automatically infer annotations
and insert them in your program.

Your choice of tool depends on what default annotation (see Section 3.2) your code uses. You only need
one of these tools.

• Inference of @Nullable: If your code uses the standard NNEL (non-null-except-locals) default or the
NonNull default, then use the AnnotateNullable tool of the Daikon invariant detector (http://pag.csail.
mit.edu/daikon/).

• Inference of @NonNull: If your code uses the Nullable default, use the Non-null checker and inferencer of
the JastAdd Extensible Compiler (http://jastadd.org/jastadd-tutorial-examples/non-null-types-for-java).

3.5 Examples

3.5.1 Tiny examples

To try the Nullness checker on a source file that uses the @NonNull qualifier, use the following command (where
javac is the JSR 308 compiler):

javac -typeprocessor checkers.nullness.NullnessChecker examples/NullnessExample.java

Compilation will complete without warnings.
To see the checker warn about incorrect usage of annotations (and therefore the possibility of a null

pointer exception at run time), use the following command:

javac -typeprocessor checkers.nullness.NullnessChecker examples/NullnessExampleWithWarnings.java

The compiler will issue three warnings regarding violation of the semantics of @NonNull.

3.5.2 Annotated library

The Nullness checker itself is annotated with @NonNull.
In addition, you can run the Nullness checker on the annotation scene library, another library that has

been fully annotated with @NonNull. To run the Nullness checker on the annotation scene library, first download
the scene library suite (which includes build dependencies for the scene library as well as its source code)
and extract it into your checkers installation. The checker can then be run on the annotation scene library
with Apache Ant using the following commands:

cd checkers

ant -f scene-lib-test.xml

You can view the annotated source code, which contains @NonNull annotations, in the checkers/scene-lib-test/src/annotations/

directory.

3.6 Suppressing warnings with assertions

In addition to the other ways of suppressing warnings (Section 2.4), the Nullness checker assumes that
assertions succeed. For example, it assumes that no null pointer exception can occur in code such as
assert x != null;

... x.f ...

(Another way of stating the Nullness checker’s use of assertions is as an additional caveat to the guarantees
provided by a checker (Section 2.7). The Nullness checker prevents null pointer errors in your code under
the assumption that assertions are enabled, and it does not guarantee that all of your assertions succeed.)

12

Figure 2: Type hierarchy for the Interning type system.

3.7 Related work

The Checker Framework @NonNull annotation is similar, but not identical, to the @NotNull annotation of IntelliJ
IDEA, the @NonNull annotation of FindBugs, the non null modifier of JML, and annotations proposed by JSR
305, among others.

4 Interning checker

If the Interning checker issues no warnings for a given program, then all reference equality tests (i.e., “==”)
in that program operate on interned types. Interning can save memory and can speed up testing for equality
by permitting use of ==; however, use of == on non-interned values can result in subtle bugs. For example:

Integer x = new Integer(22);

Integer y = new Integer(22);

System.out.println(x == y); // prints false!

The Interning checker helps programmers to prevent such bugs. The Interning checker also helps to
prevent performance problems that result from failure to use interning. (See Section 2.7 for caveats to the
checker’s guarantees.)

Two qualifiers are part of the Interning type system: @Interned and @PolyInterned. For a description of
@PolyInterned, see Section 2.5.

4.1 Annotating your code with @Interned

In order to perform checking, you must annotate your code with the @Interned type annotation, which indicates
a type for the canonical representation of an object:

String s1 = ...; // type is (uninterned) "String"

@Interned String s2 = ...; // Java type is "String", but checker treats it as "Interned String"

The type system enforced by the checker plugin ensures that only interned values can be assigned to s2.
To specify that all objects of a given type are interned, annotate the class declaration:

public @Interned class MyInternedClass { ... }

This is equivalent to annotating every use of MyInternedClass, in a declaration or elsewhere. For example,
enum classes are implicitly so annotated.

4.2 What the Interning checker checks

Objects of an @Interned type may be safely compared using the “==” operator.
The checker issues a warning in two cases:

1. When a reference (in)equality operator (“==” or “!=”) has an operand of non-@Interned type.
2. When a non-@Interned type is used where an @Interned type is expected.

13

Figure 3: Type hierarchy for Javari’s ReadOnly type qualifier.

This example shows both sorts of problems:

Object obj;

@Interned Object iobj;

...

if (obj == iobj) { ... } // checker warning: reference equality test is unsafe

iobj = obj; // checker warning: iobj’s referent may no longer be interned

String literals and the null literal are always considered interned, and object creation expressions (using
new) are never considered @Interned unless they are annotated as such, as in

@Interned Double internedDoubleZero = new @Interned Double(0); // canonical representation for Double zero

The checker also issues a warning when .equals is used where == could be safely used. You can disable
this behavior via the javac -Alint command-line option, like so: -Alint=-dotequals.

4.3 Examples

To try the Interning checker on a source file that uses the @Interned qualifier, use the following command
(where javac is the JSR 308 compiler):

javac -typeprocessor checkers.interning.InterningChecker examples/InterningExample.java

Compilation will complete without warnings.
To see the checker warn about incorrect usage of annotations, use the following command:

javac -typeprocessor checkers.interning.InterningChecker examples/InterningExampleWithWarnings.java

The compiler will issue a warning regarding violation of the semantics of @Interned.
The Daikon invariant detector (http://groups.csail.mit.edu/pag/daikon/) is also annotated with @Interned.

5 Javari checker

Javari [TE05, QTE08] is a Java language extension that helps programmers to avoid mutation errors that
result from unintended side effects. If the Javari checker issues no warnings for a given program, then that
program will never change objects that should not be changed. This guarantee enables a programmer to
detect and prevent mutation-related errors. (See Section 2.7 for caveats to the guarantee.) The Javari
webpage (http://groups.csail.mit.edu/pag/javari/) contains papers that explain the Javari language and type
system.

The Javarifier tool infers Javari types for an existing program; see Section 5.2.

14

5.1 Annotation Javari dialect

The Javari checker uses an annotation-based dialect of the Javari language. A programmer can write five an-
notations: @ReadOnly, @Mutable, @Assignable, @PolyRead, and @QReadOnly. (@QReadOnly corresponds to Javari’s “? readonly”
for wildcard types).

The @ReadOnly type annotation indicates that a reference provides only read-only access. The checker issues
an error whenever mutation happens through a readonly reference, when fields of a readonly reference which
are not explicitly marked with @Assignable are reassigned, or when a readonly expression is assigned to a
mutable variable. The checker also emits a warning when casts increase the mutability access of a reference.

The @Mutable annotation ensures that a reference is mutable, no matter the inherited mutability.
The @QReadOnly annotation is a mutability wildcard that can be applied to types (for example, List<@QReadOnly

Date>). As such, it allows only the operations which are allowed for both readonly and mutable types.
The @PolyRead annotation (previously named @RoMaybe) specifies polymorphism over mutability; it simulates

mutability overloading. It can be applied to methods and parameters. See Section 2.5 and the @PolyRead

Javadoc for more details.

5.2 Inference of Javari annotations

It can be tedious to write annotations in your code. The Javarifier tool (http://groups.csail.mit.edu/pag/
javari/javarifier/) infers Javari types for an existing program. It automatically inserts Javari annotations
in your Java program or in in .class files.

This has two benefits: it relieves the programmer of the tedium of writing annotations (though the
programmer can always refine the inferred annotations), and it annotates libraries, permitting checking of
programs that use those libraries.

5.3 Examples

To try the Javari checker on a source file that uses the Javari qualifier, use the following command, where
javac is the JSR 308 compiler, or specify just one of the test files.

javac -typeprocessor checkers.javari.JavariChecker tests/javari/*.java

The compiler should issue the errors and warnings (if any) specified in the .out files with same name.
To run the test suite for the Javari checker, use ant javari-tests.
The Javari checker itself is also annotated with Javari annotations.

6 IGJ checker

IGJ is a Java language extension that helps programmers to avoid mutation errors that result from unintended
side effects. If the IGJ checker issues no warnings for a given program, then that program will never change
objects that should not be changed. This guarantee enables a programmer to detect and prevent mutation-
related errors. (See Section 2.7 for caveats to the guarantee.)

6.1 IGJ and Mutability

IGJ permits a programmer to express that a particular object should never be modified via any reference
(object immutability), or that a reference should never be used to modify its referent (reference immutability).
Once a programmer has expressed these facts, an automatic checker analyzes the code to either locate
mutability bugs or to guarantee that the code contains no such bugs.

To learn the details of the IGJ language and type system, please see the ESEC/FSE 2007 paper “Object
and reference immutability using Java generics” [ZPA+07]. The IGJ checker supports Annotation IGJ
(Section 6.3), which is slightly different dialect of IGJ than that described in the ESEC/FSE paper.

15

Figure 4: Type hierarchy for three of IGJ’s type qualifiers.

6.2 Supported Annotations

The supported annotations are @ReadOnly, @Mutable, @Immutable, @Assignable, and @AssignsFields, as specified in the
IGJ paper. Additionally, the @I(string) annotation is added to mimic the template behavior of generics.

The @ReadOnly type annotation indicates that a reference provides only read-only access. The checker issues
an error whenever mutation happens through a readonly reference, when fields of a readonly reference which
are not explicitly marked with @Assignable are reassigned, or when a readonly expression is assigned to a
mutable variable. The checker also emits a warning when casts increase the mutability access of a reference.

The @Mutable annotation ensures that a reference is mutable, no matter the inherited mutability. @AssignsFields

similar, but permits only limited mutation — assignment of fields — and is for use by constructor helper
methods.

The @Immutable annotation ensures that a reference is to an immutable object.
The @I annotation simulates mutability overloading. It can be applied to classes, methods, and parame-

ters. See Section 6.3.3.

6.3 Annotation IGJ Dialect

The IGJ checker supports the Annotation IGJ dialect of IGJ. The syntax of Annotation IGJ is based on
JSR 308 annotations.

The syntax of the original IGJ dialect [ZPA+07] was based on Java 5’s generics and annotation mecha-
nisms. The original IGJ dialect was not backward-compatible with Java (either syntactically or semantically).
The dialect of IGJ checked by the IGJ checker corrects these problems.

The differences between the Annotation IGJ dialect and the original IGJ dialect are as follows.

6.3.1 Semantic Changes

• Annotation IGJ does not permit covariant changes in generic type arguments, for backward compati-
bility with Java. In ordinary Java, types with different generic type arguments, such as Vector<Integer>

and Vector<Number>, have no subtype relationship, even if the arguments (Integer and Number) do. The
original IGJ dialect changed the Java subtyping rules to permit safely varying a type argument covari-
antly in certain circumstances. For example,

Vector<Mutable, Integer> <: Vector<ReadOnly, Integer>

<: Vector<ReadOnly, Number>

<: Vector<ReadOnly, Object>

• Annotation IGJ supports array immutability. The original IGJ dialect did not permit the (im)mutability
of array elements to be specified, because the generics syntax used by the original IGJ dialect cannot
be applied to array elements.

6.3.2 Syntax Changes

• Immutability is specified through JSR 308 [Ern07] annotations (Section 6.2), not through a combination
of generics and annotations. Use of JSR 308 annotations makes Annotation IGJ backward compatible

16

with Java syntax.
• Templating over Immutability: The annotation @I(id) is used to template over immutability. See

Section 6.3.3.

6.3.3 Templating Over Immutability: @I

@I is a template annotation over IGJ Immutability annotations. It acts similarly to type variables in Java’s
generic types, and the name @I mimics the standard <I> type variable name used in code written in the
original IGJ dialect. The annotation value string is used to distinguish between multiple instances of @I —
in the generics-based original dialect, these would be expressed as two type variables <I> and <J>.

Usage on classes A class annotated with @I could be declared with any IGJ Immutability annotation. The
actual immutability that @I is resolved to dictates the immutability type for all the non-static appearances
of @I with the same value as the class declaration.

Example:

@I

public class FileDescriptor {

private @Immutable Date creationData;

private @I Date lastModData;

public @I Date getLastModDate() @ReadOnly { }

}

...

void useFileDescriptor() {

@Mutable FileDescriptor file =

new @Mutable FileDescriptor(...);

...

@Mutable Data date = file.getLastModDate();

}

In the last example, @I was resolved to @Mutable for the instance file.

Usage on methods For example, it could be used for method parameters, return values, and the actual
IGJ immutability value would be resolved based on the method invocation.

For example, the below method getMidpoint returns a Point with the same immutability type as the passed
parameters if p1 and p2 match in immutability, otherwise @I is resolved to @ReadOnly:

static @I Point getMidpoint(@I Point p1, @I Point p2) { ... }

The @I annotation value distinguishes between @I declarations. So, the below method findUnion returns a
collection of the same immutability type as the first collection parameter:

static <E> @I("First") Collection<E> findUnion(@I("First") Collection<E> col1,

@I("Second") Collection<E> col2) { ... }

6.4 Examples

To try the IGJ checker on a source file that uses the IGJ qualifier, use the following command, where javac

is the JSR 308 compiler.

javac -typeprocessor checkers.igj.IGJChecker examples/IGJExample.java

The IGJ checker itself is also annotated with IGJ annotations.

17

7 The Basic checker

The Basic checker enforces only subtyping rules. It operates over annotations specified by a user on the
command line. Thus, users can create a simple type checker without writing any code beyond definitions of
the type qualifier annotations.

The Basic checker can accommodate all of the type system enhancements that can be declaratively
specified (see Section 9). This includes type introduction rules (implicit annotations, e.g., literals are implic-
itly considered @NonNull) via the @ImplicitFor meta-annotation, and other features such as flow-sensitive type
qualifier inference (Section 2.6.2) and qualifier polymorphism (Section 2.5).

The Basic checker is also useful to type system designers who wish to experiment with a checker before
writing code; the Basic checker demonstrates the functionality that a checker inherits from the Checker
Framework.

For type systems that require special checks (e.g., warning about dereferences of possibly-null values),
you will need to write code and extend the framework as discussed in Section 9.

7.1 Using the Basic checker

The Basic checker is used in the same way as other checkers (using the -processor option; see Section 2),
except that it requires an additional annotation processor argument via the standard “-A” switch:

• -Aquals: this option specifies a comma-no-space-separated list of the fully-qualified class names of the
annotations used as qualifiers in the custom type system. It serves the same purpose as the @TypeQualifiers

annotation used by other checkers (see section 9.4).

The annotations listed in -Aquals must be accessible to the compiler during compilation, either on the
classpath or sourcepath or as one of the .java files passed to the compiler.

7.2 Basic checker example

Consider a hypothetical Encrypted type qualifier, which denotes that the representation of an object (such as
a String, CharSequence, or byte[]) is encrypted. To use the Basic checker for the Encrypted type system, follow
three steps.

1. Define an annotation for the Encrypted qualifier:
package myquals;

/**

* Denotes that the representation of an object is encrypted.

* ...

*/

@TypeQualifier

public @interface Encrypted {}

2. Write @Encrypted annotations in your program:
public @Encrypted String encrypt(String text) {

// ...

}

// Only send encrypted data!

public void sendOverInternet(@Encrypted String msg) {

// ...

}

void sendText() {

// ...

@Encrypted String ciphertext = encrypt(plaintext);

sendOverInternet(ciphertext);

18

// ...

}

void sendPassword() {

String password = getUserPassword();

sendOverInternet(password);

}

3. Invoke the compiler with the Basic checker, specifying the @Encrypted annotation using the -Aquals

option:
\$ javac -processor checkers.basic.BasicChecker -Aquals=myquals.Encrypted YourProgram.java

YourProgram.java:42: incompatible types.

found : java.lang.String

required: @myquals.Encrypted java.lang.String

sendOverInternet(password);

^

8 Annotating libraries

When annotated code uses unannotated code, a checker may issue warnings. As described in Section 2.3,
the best way to correct this problem is to add annotations to the library. This section tells you how to add
annotations to a library for which you have no source code, because the library is library distributed only
binary (.class or .jar) form.

Before you read this section, note that you may be able to obtain a version of the library that contains the
annotations, or a set of external annotations that describe the library. For example, the Checker Framework
distribution contains annotations for popular libraries, such as the JDK. If you annotate additional libraries,
please share them with us so that we can distribute the annotations with the Checker Framework; see
Section 2.9.

You can determine the correct annotations for a library either automatically by running an inference tool,
or manually by reading the documentation. Presently, type inference tools are available for the Nullness
(Section 3.4) and Javari (Section 5.2) type systems.

You can make the annotations known to the JSR 308 compiler (and thus to the checkers) in two ways.

• You can use the skeleton class generation tool to create a “skeleton class” file with empty method
bodies, and annotate the skeleton class file. Then, you can either supply the skeleton class files when
compiling/checking your program (but never when running your program), or you can insert the
annotations in the original library. Section 8.1 describes how to use the skeleton class generation tools.

• You can annotate the compiled .jar or .class files using the annotation file utilities (http://groups.csail.
mit.edu/pag/jsr308/annotation-file-utilities/). First, express the annotations textually as an annota-
tion index file, and then the tools insert them in the compiled library class files. See the Annotation
File Utilities documentation for full details.

8.1 The skeleton class generators

One way to do so is to annotate a “skeleton class” version of the library and use it during compilation
(only). A skeleton class has properly-annotated signatures, but trivial method bodies that always throw an
exception.

There are two steps to creating, and two steps to using, a skeleton class. We illustrate them via the
example of creating a @NonNull-annotated version of java.lang.Set. (You don’t need to repeat these steps, since
such a skeleton class is already included in the Checker Framework distribution.)

We distribute two tools for generating skeleton file: a command-line tool to generate skeleton classes
from binary (either classfiles or binary jars), and an Eclipse plug-in to generate skeleton classes from source.

The command-line skeleton class generator is included in the distribution. The Eclipse plug-in is available,
along with instructions for installing and running it, at http://pag.csail.mit.edu/jsr308/eclipse/.

19

8.1.1 Creating a skeleton class from a binary

1. Create a skeleton class by running the skeleton class generator.
cd checkers/jdk/nullness/src

java checkers.util.skel.Skeleton java.util.Set > java/util/Set.java

Supply it with the fully-qualified name of the class for which you wish to generate a skeleton class.
The skeleton class generator prints the skeleton class to standard out, so you may wish to redirect its
output to a file.
You need to ensure that both checkers.jar and lib/asmx.jar are in your classpath.

2. Add annotations to the skeleton class. For example, you might annotate the Set.iterator() method as
follows:

public abstract @NonNull java.util.Iterator<E> iterator();

8.1.2 Creating skeleton classes from source

1. Create a new Eclipse project containing the desired packages. The plug-in performs in-place modifi-
cations to the files. They need to be in the source path (usually in src/ directory), but do not need to
have the classpath configured properly.

2. Select (i.e. highlight) the packages (or individual source files) to be converted.
3. Choose JSR308 Tools ¿ Skeleton Files (With JavaDocs) or JSR308 Tools ¿ Skeleton Files

(No JavaDocs) from their context menus. The documentation might be helpful when annotating the
code.

4. The plug-in generates skeleton files in place of the input files.
5. Add annotations to the skeleton classes.

8.1.3 Using a skeleton class

1. When you run javac, add a -sourcepath argument to indicate where to find the skeleton classes. Supply
-sourcepath in addition to whatever other arguments you usually use, including -classpath.
The -sourcepath argument causes the compiler to read annotations from annotated skeleton classes in
preference to the unannotated original library classes. However, the compiler will use the originals on
the classpath if no file is available on the sourcepath.

javac -typeprocessor checkers.nullness.NullnessChecker -sourcepath checkers/jdk/nullness/src my_source_files

2. Run the compiled code as usual. Do not include the skeleton files on the classpath. If a skeleton
method is called instead of the true library method, then your program will throw a RuntimeException.

8.1.4 Known problems

The skeleton class generator has several limitations that require you to edit its output before using it. We
are working to correct these bugs.

• It does not handle enums.
• It does not add a super() call in constructors.
• It does not add type variable declarations in static methods.

9 How to create a new checker

This section describes how to extend the Checker Framework to create a checker — a type-checking compiler
plugin that detects bugs or verifies their absence. After a programmer annotates a program, the checker
plugin verifies that the code is consistent with the annotations. If you only want to use a checker, you do
not need to read this section.

20

Writing a simple checker is easy! Don’t let the details in this section overwhelm you. This section
contains many details for people who want to write powerful checkers, but you may not need all of it,
at least at first. In addition to reading this section of the manual, you may find it helpful to examine
the implementations of the checkers that are distributed with the Checker Framework, or to create your
checker by modifying another one. The Javadoc documentation of the framework is available online at
http://pag.csail.mit.edu/jsr308/current/doc/.

If you write a new checker, let us know so we can link to it from our webpages or include it in the Checker
Framework distribution.

The Checker Framework provides abstract base classes (default implementations), and a specific checker
overrides as little or as much of the default implementations as necessary. Sections 9.1–9.4 describe the
components of a type system as written using the Checker Framework:

9.1 Type qualifiers and hierarchy. You define the annotations for the type system and the subtyping
relationships among qualified types (for instance, that @NonNull Object is a subtype of @Nullable Object).

9.2 Type introduction rules. For some types and expressions, a qualifier should be treated as present
even if a programmer did not explicitly write it. For example, in the Nullness type system every literal
other than null has a @NonNull type; examples of literals include "some string" and java.util.Date.class.

9.3 Type rules. You specify the the type system semantics (type rules), violation of which yields a
type error. There are two types of rules. Your checker automatically inherits rules related to the type
hierarchy, such as that every assignment and pseudo-assignment satisfies a subtyping relationship. You
write any additional rules. For example, in the Nullness type system, only references with a @NonNull

type may be dereferenced.
9.4 Interface to the compiler. The compiler interface indicates which annotations are part of the type

system, which command-line options and @SuppressWarnings annotations the checker recognizes, etc.

9.1 Annotations: Type qualifiers and hierarchy

A type system designer specifies the qualifiers in the type system and the type hierarchy that relates them.
Type qualifiers are defined as Java annotations [Dar06]. In Java, an annotation is defined using the

Java @interface keyword. Write the @TypeQualifier annotation on the annotation definition to indicate that the
annotation represents a type qualifier (e.g., @NonNull or @Interned) and should be processed by the checker. For
example:

// Define an annotation for the @NonNull type qualifier.

@TypeQualifier

public @interface NonNull { }

(An annotation that is written on an annotation definition, such as @TypeQualifier, is called a meta-annotation.)
The type hierarchy induced by the qualifiers can be defined either declaratively via meta-annotations

(Section 9.1.1), or procedurally through sub-classing QualifierHierarchy or TypeHierarchy (Section 9.1.2).
To set a default annotation (which a user may override), use the QualifierDefaults.setAbsoluteDefaults

method. You may do this even if you have declaratively defined the qualifier hierarchy; see the Nullness
checker’s implementation for an example. Recall that defaults are distinct from implicit annotations; see
Sections 2.6 and 9.2.

9.1.1 Declaratively defining the qualifier and type hierarchy

Declaratively, the type system designer uses two meta-annotations (written on the declaration of qualifier
annotations) to specify the qualifier hierarchy.

• @SubtypeOf denotes that a qualifier is the subtype of another qualifier or qualifiers, specified as an array
of class literals. For example, for any type T , @NonNull T is a subtype of @Nullable T :

21

@TypeQualifier

@SubtypeOf({ Nullable.class })

public @interface NonNull { }

(The actual definition of NonNull is slightly more complex.)
@SubtypeOf accepts multiple annotation classes as an argument, permitting the type hierarchy to be an
arbitrary DAG. For example, in the IGJ type system (Section 6.2), @Mutable and @Immutable induce two
mutually exclusive subtypes of the @ReadOnly qualifier.
As a special case, the root qualifier needs to be annotated with @Subtype(). The root qualifier is the
qualifier that is a supertype of all other qualifiers. Nullable is the root of the Nullness type system,
hence is defined as:

@TypeQualifier

@SubtypeOf({ })

public @interface Nullable { }

All type qualifiers, except for polymorphic qualifiers, need to be properly annotated with SubtypeOf.
• @PolymorphicQualifier denotes that a qualifier is a polymorphic qualifier. For example:

@TypeQualifier

@PolymorphicQualifier

public @interface PolyNull { }

For a description of polymorphic qualifiers, see Section 2.5. A polymorphic qualifier needs no @SubtypeOf

meta-annotation and need not be mentioned in any other @SubtypeOf meta-annotation.

The declarative and procedural mechanisms for specifying the hierarchy can be used together. In par-
ticular, when using the @SubtypeOf meta-annotation, further customizations may be performed procedurally
(Section 9.1.2) by overriding the isSubtype method in the checker class (Section 9.4). However, the declarative
mechanism is sufficient for most type systems.

9.1.2 Procedurally defining the qualifier and type hierarchy

While the declarative syntax suffices for many cases, more complex type hierarchies can be expressed by
overriding, in BaseTypeChecker, either createQualifierHierarchy or createTypeHierarchy (typically only one of
these needs to be overridden). For more details, see the Javadoc of those methods and of the classes
QualifierHierarchy and TypeHierarchy.

The QualifierHierarchy class represents the qualifier hierarchy (not the type hierarchy), e.g., Mutable is a
subtype of ReadOnly. A type-system designer may subclass QualifierHierarchy to express customized qualifier
relationships (e.g., relationships based on annotation arguments).

The TypeHierarchy class represents relationships between annotated types, rather than merely type qual-
ifiers, e.g., @Mutable Date is a subtype of @ReadOnly Date. The default TypeHierarchy uses QualifierHierarchy

to determine all subtyping relationships. The default TypeHierarchy handles generic type arguments, array
components, type variables, and wild-cards in a similar manner to the Java standard subtype relationship
but with taking qualifiers into consideration. Some type systems may need to override that behavior. For
instance, the Java Language Specification specifies that two generic types are subtypes only if their type
arguments are identical: for example, List<Date> is not a subtype of List<Object>, or of any other generic
List. (In the technical jargon, the generic arguments are “invariant”.) The Javari type system overrides this
behavior to allow some type arguments to change covariantly in a type-safe manner (e.g., List<@Mutable Date>

is a subtype of List<@QReadOnly Date>).

9.1.3 Defining Polymorphic Qualifiers

9.2 Type Factory: Implicit annotations

For some types and expressions, a qualifier should be treated as present even if a programmer did not
explicitly write it. For example, every literal (other than null) has a @NonNull type.

The implicit annotations may be specified declaratively and/or procedurally.

22

9.2.1 Declaratively specifying implicit annotations

The @ImplicitFor meta-annotation indicates implicit annotations. When written on a qualifier, ImplicitFor

specifies the trees (AST nodes) and types for which the framework should automatically add that qualifier.
In short, the types and trees can be specified via any combination of four fields:

• trees: an array of com.sun.source.tree.Tree.Kind, e.g., NEW ARRAY or METHOD INVOCATION

• types: an array of TypeKind, e.g., ARRAY or BOOLEAN

• treeClasses: an array of class literals for classes implementing Tree, e.g., LiteralTree.class or ExpressionTree.class
• typeClasses: an array of class literals for classes implementing javax.lang.model.type.TypeMirror, e.g.,

javax.lang.model.type.PrimitiveType. Often you should use a subclass of AnnotatedTypeMirror

For example, consider the definitions of the @NonNull and @Nullable type qualifiers:

@TypeQualifier

@SubtypeOf({ Nullable.class })

@ImplicitFor(

types={TypeKind.PACKAGE},

typeClasses={AnnotatedPrimitiveType.class},

trees={

Tree.Kind.NEW_CLASS,

Tree.Kind.NEW_ARRAY,

Tree.Kind.PLUS,

// All literals except NULL_LITERAL:

Tree.Kind.BOOLEAN_LITERAL, Tree.Kind.CHAR_LITERAL, Tree.Kind.DOUBLE_LITERAL, Tree.Kind.FLOAT_LITERAL,

Tree.Kind.INT_LITERAL, Tree.Kind.LONG_LITERAL, Tree.Kind.STRING_LITERAL

})

public @interface NonNull { }

@TypeQualifier

@SubtypeOf({})

@ImplicitFor(trees={Tree.Kind.NULL_LITERAL})

public @interface Nullable { }

For more details, see the Javadoc for the ImplicitFor annotation, and the Javadoc for the javac classes
that are linked from it. (You only need to understand a small amount about the javac AST, such as the
Tree.Kind and TypeKind enums. All the information you need is in the Javadoc, and Section 9.7 can help you
get started.)

9.2.2 Procedurally specifying implicit annotations

The Checker Framework provides a representation of annotated types, AnnotatedTypeMirror, that extends the
standard TypeMirror interface but integrates a representation of the annotations into a type representation.
A checker’s type factory class, given an AST node, returns the annotated type of that expression. The
Checker Framework’s abstract base type factory class, AnnotatedTypeFactory, supplies a uniform, Tree-API-
based interface for querying the annotations on a program element, regardless of whether that element is
declared in a source file or in a class file. It also handles default annotations, and it optionally performs
flow-sensitive local type inference.

AnnotatedTypeFactory inserts the qualifiers that the programmer explicitly inserted in the code. Yet, certain
constructs should be treated as having a type qualifier even when the programmer has not written one. The
type system designer may subclass AnnotatedTypeFactory and override annotateImplicit(Tree,AnnotatedTypeMirror)

and annotateImplicit(Element,AnnotatedTypeMirror) to account for such constructs.

9.3 Visitor: Type Rules

A type system’s rules define which operations on values of a particular type are forbidden.

23

The framework provides a base visitor class, BaseTypeVisitor, that performs type-checking at each node
of a source file’s AST. It uses the visitor design pattern to traverse Java syntax trees as provided by Sun’s
Tree API, and issues a warning whenever the type system induced by the type qualifier is violated.

A checker’s visitor overrides one method in the base visitor for each special rule in the type qualifier
system. Most type-checkers override only a few methods in BaseTypeVisitor. For example, the visitor for the
Nullness type system of Section 3 consists of a single 4-line method that warns if an expression of nullable
type is dereferenced, as in:

myObject.hashCode(); // invalid dereference

By default, BaseTypeVisitor performs subtyping checks that are similar to Java subtype rules, but taking
the type qualifiers into account. BaseTypeVisitor issues these errors:

• invalid assignment (type.incompatible) when an assignment from an expression type to an incompatible
type. The assignment may be a simple assignment, or pseudo-assignment like return expressions or
argument passing in a method invocation
In particular, in every assignment and pseudo-assignment, the left-hand side of the assignment is a
supertype of (or the same type as) the right-hand side. For example, this assignment is not permitted:

@Nullable Object myObject;

@NonNull Object myNonNullObject;

...

myNonNullObject = myObject; // invalid assignment

• invalid generic argument (generic.argument.invalid) when a type is bound to an incompatible generic
type variable

• invalid method invocation (method.invocation.invalid) when a method is invoked on an object whose
type is incompatible with the method receiver type

• invalid overriding parameter type (override.parameter.invalid) when a parameter in a method declara-
tion is incompatible with that parameter in the overridden method’s declaration

• invalid overriding return type (override.return.invalid) when a parameter in a method declaration is
incompatible with that parameter in the overridden method’s declaration

• invalid overriding receiver type (override.receiver.invalid) when a receiver in a method declaration is
incompatible with that receiver in the overridden method’s declaration

9.4 The checker class: Compiler Interface

A checker’s entry point is a subclass of BaseTypeChecker. This entry point, which we call the checker class,
serves two roles: an interface to the compiler and a factory for constructing type-system classes.

Because the Checker Framework provides reasonable defaults, oftentimes the checker class has no work
to do. Here are the complete definitions of the checker classes for the Interning and Nullness checkers:

@TypeQualifiers({ Interned.class, PolyInterned.class })

@SupportedLintOptions({"dotequals"})

public final class InterningChecker extends BaseTypeChecker { }

@TypeQualifiers({ Nullable.class, Raw.class, NonNull.class, PolyNull.class })

@SupportedLintOptions({"flow", "cast", "cast:redundant"})

public class NullnessChecker extends BaseTypeChecker { }

The checker class must be annotated by @TypeQualifiers, which lists the annotations that make up the
type hierarchy for this checker (including polymorphic qualifiers), provided as an array of class literals.
Each one is a type qualifier whose definition bears the @TypeQualifier meta-annotation (or is returned by the
BaseTypeChecker.getSupportedTypeQualifiers method).

The checker class bridges between the compiler and the checker plugin. It invokes the type-rule check
visitor on every Java source file being compiler, and provides a simple API, report, to issue errors using the
compiler error reporting mechanism.

24

Also, the checker class follows the factory method pattern to construct the concrete classes (e.g., visi-
tor, factory) and annotation hierarchy representation. It is a convention that, for a type system Foo, the
compiler interface (checker), the visitor, and the annotated type factory are named as FooChecker, FooVisitor,
and FooAnnotatedTypeFactory. BaseTypeChecker uses the convention to reflectively construct the components.
Otherwise, the checker writer must specify the component classes for construction.

A checker can customize the default error messages through a Properties-loadable text file named messages.properties

that appers in the same directory as the checker class. The property file keys are the strings passed
to report (like type.incompatible) and the values are the strings to be printed (cannot assign ...). The
messages.properties file only need to mention the new messages that the checker defines. It is also allowed to
override messages defined in superclasses, but this is rarely needed.

9.5 Testing framework

[This section should discuss the testing framework that is used for checking the distributed checkers.]

9.6 Debugging options

The Checker Framework provides debugging options that can be helpful when writing checker. These are
provided via the standard javac “-A” switch, which is used to pass options to an annotation processor.

• -Anomsgtext: use message keys (such as “type.invalid”) rather than full message text when reporting
errors or warnings

• -Ashowchecks: print debugging information for each pseudo-assignment check (as performed by BaseTypeVisitor;
see Section 9.3 above)

• -Afilenames: prints the name of each file before type-checking it

The following example demonstrates how these options are used:

\$ javac -processor checkers.interning.InterningChecker \

examples/InternedExampleWithWarnings.java -Ashowchecks -Anomsgtext -Afilenames

[InterningChecker] InterningExampleWithWarnings.java

success (line 18): STRING_LITERAL "foo"

actual: DECLARED @checkers.interning.quals.Interned java.lang.String

expected: DECLARED @checkers.interning.quals.Interned java.lang.String

success (line 19): NEW_CLASS new String("bar")

actual: DECLARED java.lang.String

expected: DECLARED java.lang.String

examples/InterningExampleWithWarnings.java:21: (not.interned)

if (foo == bar)

^

success (line 22): STRING_LITERAL "foo == bar"

actual: DECLARED @checkers.interning.quals.Interned java.lang.String

expected: DECLARED java.lang.String

1 error

9.7 javac implementation survival guide

The implementation of Sun’s javac compiler can be a bit daunting to a newcomer, and its documentation
does not particularly help a newcomer to get oriented. This section helps you to understand the small part
of javac that you need in order to write a checker.

A Tree is an AST node; it represents an arbitrary code snippet such as a method definition, a block, a
statement, etc.

The Tree interface has many subinterfaces, that specify what kind of node is being handled. Trees are
usually processed by a class implementing the TreeVisitor interface, through the accept method on Tree.
Common implementations of TreeVisitor that you may want to extend are SimpleTreeVisitor, that visits a

25

single node based on its type, TreeScanner, that visits all subnodes recursively, and TreePathScanner, that visits
all subnodes recursively and stores the TreePath corresponding the the currently visited Tree. (Also note that
the iterator given by TreePath used to have an implementation bug.)

In order to determine the kind of an object that extends Tree , use the getKind method, as opposed to
the instanceof operator, since a Tree implementation might opt to implement more than one interface from
this API. There is an utility class to perform operations on trees, Trees, but the framework is intended to do
all the low-level tree processing, so you probably should not need to use this class.

An Element represents a program element such as packages, classes or methods. Element has 5 subinter-
faces: ExecutableElement represents methods, constructors or initializers (anything invocable); PackageElement

represents package elements, and contain package information; TypeElement represents the element of a class
or an interface (note that TypeElement is an Element, not a Type; the corresponding Type is represented by
DeclaredType; TypeParameterElement represents an element of a formal type parameter of a something with
generics, and VariableElement represents the element associated with a variable. There is an ElementVisitor

interface for visiting objects that Element, in a similar manner to the Tree visitors, with similar provided
implementations. Use the asType method from Element to obtain a TypeMirror for the element.

Again, Element is an interface, so use getKind() to obtain the kind of an Element, as opposed to the
instanceof operator, since an implementation of Element might also implement other element interfaces. There
is an utility class for handling elements, Elements; the appropriate instance can be obtained by using the
getElementUtils method on the ProcessingEnvironment object visible on factories and checkers. The framework
should do most of the element processing that requires Elements, unless you are doing something non-trivial.

A TypeMirror represents a Java type. It is yet another interface you should be familiar with, with various
subinterfaces, notable ones being DeclaredType for class and interface types, and ExecutableType for method,
constructor and initializer types.

Note that a MethodTree resolves into a ExecutableType, while a MethodInvocationTree resolves into a DeclaredType

if the return type is a class or an interface, an ArrayType if the return type is an array, a NoType if the return
type is void, or a PrimitiveType if the return type is primitive.

Not every Tree corresponds to an Element (such as a BlockTree), not every Tree corresponds to a TypeMirror

(again, such as a BlockTree), and not every TypeMirror has a corresponding Element (such as primitive types or
arrays).

As one could expect by this point, TypeMirror is an interface, so use the appropriate getKind() method to
distinguish the types, as opposed to the instanceof operator, since those are interfaces, and more than one
can be implemented by a same object.

Note that the TypeMirror API makes no guarantees that the same type will always be represented by the
same object; use the method recommended on the API if you need to compare two types.

TypeVisitor and implementations of visitors for TypeMirror are provided, but those classes should not be
used or extended directly on the framework, since all checker plugin classes are meant to visit AnnotatedTypeMirror
instead, modifying the annotations as needed. A Types utility class is provided by the ProcessingEnvironment

as well, if you need to do more complex operations with types. In general, you should use AnnotatedTypeMirror

and its subclasses as opposed to using TypeMirror and its subinterfaces.
An AnnotatedTypeMirror (defined in the Checker Framework, not in javac) represents an annotated type

— a type along with all its annotations. It is modeled after Sun’s TypeMirror. Similarly modeled visitors are
presented: a AnnotatedTypeVisitor interface, implemented by SimpleAnnotatedTypeVisitor for visiting just one
node, AnnotatedTypeScanner for visiting every node recursively.

In short: a Tree represents some snippet of code, an Element represents some program element, and a
TypeMirror represents a Java type, but you usually should use AnnotatedTypeMirror, provided by the checkers
framework, instead of TypeMirror, as our implementation carries along with the types the annotation informa-
tion at every node level. The AnnotatedTypeFactory (or its extension on your framework plugin) is responsible
for producing AnnotatedTypeMirror objects for Tree and Element parameters it receives; those AnnotatedTypeMirror

objects are then processed by the visitor class and checked by the checker class on your checker plugin.

26

References

[Dar06] Joe Darcy. JSR 269: Pluggable annotation processing API. http://jcp.org/en/jsr/detail?
id=269, May 17, 2006. Public review version.

[Ern07] Michael D. Ernst. Annotations on Java types: JSR 308 working document. http://pag.csail.
mit.edu/jsr308/, November 12, 2007.

[Eva96] David Evans. Static detection of dynamic memory errors. In PLDI 1996, Proceedings of the
SIGPLAN ’96 Conference on Programming Language Design and Implementation, pages 44–53,
Philadelphia, PA, USA, May 21–24, 1996.

[FL03] Manuel Fähndrich and K. Rustan M. Leino. Declaring and checking non-null types in an object-
oriented language. In Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA 2003), pages 302–312, Anaheim, CA, USA, November 6–8, 2003.

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and
Raymie Stata. Extended static checking for Java. In PLDI 2002, Proceedings of the ACM SIG-
PLAN 2002 Conference on Programming Language Design and Implementation, pages 234–245,
Berlin, Germany, June 17–19, 2002.

[LBR06] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. ACM SIGSOFT Software Engineering Notes, 31(3),
March 2006.

[PAC+08] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and Michael D. Ernst.
Practical pluggable types for Java. In ISSTA 2008, Proceedings of the 2008 International Sym-
posium on Software Testing and Analysis, Seattle, WA, USA, July 22–24, 2008.

[QTE08] Jaime Quinonez, Matthew S. Tschantz, and Michael D. Ernst. Inference of reference immutability.
In ECOOP 2008 — Object-Oriented Programming, 22nd European Conference, Paphos, Cyprus,
July 9–11, 2008.

[TE05] Matthew S. Tschantz and Michael D. Ernst. Javari: Adding reference immutability to Java.
In Object-Oriented Programming Systems, Languages, and Applications (OOPSLA 2005), pages
211–230, San Diego, CA, USA, October 18–20, 2005.

[ZPA+07] Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kieżun, and Michael D. Ernst.
Object and reference immutability using Java generics. In ESEC/FSE 2007: Proceedings of the
11th European Software Engineering Conference and the 15th ACM SIGSOFT Symposium on the
Foundations of Software Engineering, Dubrovnik, Croatia, September 5–7, 2007.

27

