A Dataflow Framework for Java

Stefan Heule Charlie Garrett
stefanheule@gmail.com charlie.garrett@gmail.com

October 3, 2018

1 Introduction

This document describes a Dataflow Framework for the Java Programming Language. The framework is
used in the Checker Framework, Error Prone, NullAway, and other contexts.

The primary purpose of the Dataflow Framework is to estimate values: that is, to determine that, on a
particular line of source code, what values a variable might contain. This can also determine that a variable
has a more precise type than its declared type. This enables flow-sensitive type checking in the Checker
Framework, which reduces the burden of annotating a program. The Dataflow Framework was designed
with several goals in mind. First, to encourage other uses of the framework, it is written as a separate
package that can be built and used with no dependence on the Checker Framework. Second, the framework
is currently intended to support analysis but not transformation, so it provides information that can be used
by a type checker or an IDE, but it does not support optimization. Third, the framework aims to minimize
the burden on developers who build on top of it. In particular, the hierarchy of analysis classes is designed
to reduce the effort required to implement a new flow-sensitive type checker in the Checker Framework. The
Dataflow User’s Guide gives an introduction to customizing dataflow to add checker specific enhancements.

The Dataflow Framework’s result (Section 2.2.9) is an abstract value for each expression (an estimate of
the expression’s run-time value) and a store at each program point. A store maps variables and other
distinguished expressions to abstract values. As a pre-pass, the Dataflow Framework transforming an input
AST into a control flow graph (Section 3) consisting of basic blocks made up of nodes representing single
operations. To produce its output, the Checker Framework performs iterative data flow analysis over the
control flow graph. The effect of a single node on the dataflow store is represented by a transfer function,
which takes an input store and a node and produces an output store. Once the analysis reaches a fix point,
the result can be accessed by client code.

In the Checker Framework, the abstract values to be computed are annotated types. An individual checkers
can customize its analysis by extending the abstract value class and by overriding the behavior of the transfer
function for particular node types.

Paragraphs colored in gray with a gray bar on the left side (just like this one) contain questions, additional
comments or indicate missing parts. Eventually, these paragraphs will be removed.

stefanheule@gmail.com
charlie.garrett@gmail.com
https://checkerframework.org/
http://errorprone.info/
https://github.com/uber/NullAway
https://docs.google.com/document/d/1oYzbOrrS4ZEEx4wQgIHbijNzcI5CiQAq_-1NrOS8JME/edit?usp=sharing

2 Organization

2.1 Projects

The source code of the combined Checker Framework and Dataflow Framework is divided into five projects:
javacutil, dataflow, stubparser, framework, and checker, which can be built into distinct jar files.

javacutil provides convenient interfaces to routines in Oracle’s javac library. There are utility classes for
interacting with annotations, elements, trees and types, as well as InternalUtils, which gives direct access
to internal features of javac that are not part of a supported interface. There are interfaces or abstract
classes for reporting errors, for processing types in an AST, and for providing the annotations present on an
Element. The org.checkerframework. javacutil.trees package provides a class to parse expressions into
javac Trees (TreeParser), a class to build new Trees from scratch (TreeBuilder), and a class to represent
newly introduced variables that are not part of an input program (DetachedVarSymbol).

dataflow contains the classes to represent and construct control flow graphs and the base classes required
for flow analysis. These classes are described in detail in Section 2.2.1.

stubparser contains the stub-file parsing project.

framework contains the framework aspects of the Checker Framework, including the derived classes for flow
analysis of annotated types which are described later in this document.

checker contains the type system-specific checkers.

The dataflow project depends on javacutil, the framework project depends on both dataflow and
javacutil, stubparser has no dependencies, and checker depends on framework and stubparser.

2.2 Classes
This section gives an overview of the major Java classes and interfaces in the implementation of the Dataflow
Framework and the flow-sensitive type checking feature of the Checker Framework. It includes both the base

classes in the dataflow project and the derived classes in the framework project. The class and interface
declarations are given with full package names to indicate which project they belong to.

2.2.1 Nodes
Dataflow doesn’t actually work on trees; it works on Nodes. Nodes simplify writing a dataflow analysis
by separating the dataflow analysis from the original source code. A Node class represents an individual

operation of a program, including arithmetic operations, logical operations, method calls, variable references,
array accesses, etc. Table 1 lists the Node types.

package org.checkerframework.dataflow.cfg.node;

abstract class Node
class *Node extends Node

2.2.2 Blocks

Nodes are grouped into basic blocks using a hierarchy of Block classes. The hierarchy is composed of five
interfaces, two abstract classes, and four concrete classes.

package org.checkerframework.dataflow.cfg.block;

interface Block

abstract class BlockImpl implements Block

interface SingleSuccessorBlock extends Block

abstract class SingleSuccessorBlockImpl extends BlockImpl implements SingleSuccessorBlock

A RegularBlock contains no exception-raising operations and has a single control-flow successor.

package org.checkerframework.dataflow.cfg.block;
interface RegularBlock extends SingleSuccessorBlock
class RegularBlockImpl extends SingleSuccessorBlockImpl implements RegularBlock

An ExceptionBlock contains a single operation that may raise an exception, with one or more exceptional
successors and a single normal control-flow successor.

package org.checkerframework.dataflow.cfg.block;
interface ExceptionBlock extends SingleSuccessorBlock
class ExceptionBlockImpl extends SingleSuccessorBlockImpl implements ExceptionBlock

A SpecialBlock represents method entry or exit, including exceptional exit which is represented separately
from normal exit.

package org.checkerframework.dataflow.cfg.block;
interface SpecialBlock extends SingleSuccessorBlock
class SpecialBlockImpl extends SingleSuccessorBlockImpl implements SpecialBlock

A ConditionalBlock contains no operations at all. It represents a control-flow split to either a ‘then’ or an
‘else’ successor based on the immediately preceding boolean-valued Node.

package org.checkerframework.dataflow.cfg.block;
interface ConditionalBlock extends Block
class ConditionalBlockImpl extends BlockImpl implements ConditionalBlock

2.2.3 ControlFlowGraph

A ControlFlowGraph represents the body of a method or an initializer expression as a graph of Blocks
with distinguished entry, exit, and exceptional exit SpecialBlocks. ControlFlowGraphs are produced by the
CFGBuilder classes and are treated as immutable once they are built.

package org.checkerframework.dataflow.cfg;
class ControlFlowGraph

2.2.3.1 CFGBuilder The CFGBuilder classes visit an AST and produce a corresponding ControlFlow-
Graph as described in Section 3.3.

package org.checkerframework.dataflow.cfg;
class CFGBuilder

The Checker Framework derives from CFGBuilder in order to desugar enhanced for loops that make explicit
use of type annotations provided by the checker in use.

package org.checkerframework.framework.flow;
class CFCFGBuilder extends CFGBuilder

2.2.4 FlowExpressions

The Dataflow Framework records the abstract values of certain expressions, called FlowExpressions: local
variables, field accesses, array accesses, references to this, and pure method calls. FlowExpressions are keys
in the store of abstract values.

package org.checkerframework.dataflow.analysis;
class FlowExpressions

Java expressions that appear in method pre- and postconditions are parsed into FlowExpressions using helper
routines in org.checkerframework.framework.util.FlowExpressionParseUtil.

2.2.5 AbstractValue

AbstractValue is the internal representation of dataflow information produced by an analysis. An Abstract-
Value is an estimate about the run-time values that an expression may evaluate to. The client of the
Dataflow Framework defines the abstract value, so the information may vary widely among different users
of the Dataflow Framework, but they share a common feature that one can compute the least upper bound
of two AbstractValues.

package org.checkerframework.dataflow.analysis;
interface AbstractValue<V extends AbstractValue<V>>

For the Checker Framework, abstract values are essentially AnnotatedTypeMirrors.

package org.checkerframework.framework.flow;
abstract class CFAbstractValue<V extends CFAbstractValue<V>> implements AbstractValue<V>
class CFValue extends CFAbstractValue<CFValue>

For the Nullness Checker, abstract values additionally track the meaning of PolyNull, which may be either
Nullable or NonNull. The meaning of PolyNull can change when a PolyNull value is compared to the null
literal, which is specific to the NullnessChecker. Other checkers often also support a Poly* qualifier, but
only the NullnessChecker tracks the meaning of its poly qualifier using the dataflow analysis.

package org.checkerframework.checker.nullness;
class NullnessValue extends CFAbstractValue<NullnessValue>

2.2.6 Store

A Store is a set of dataflow facts computed by an analysis, so it is a mapping from FlowExpressions to
AbstractValues. As with AbstractValues, one can take the least upper bound of two Stores.

package org.checkerframework.dataflow.analysis;
interface Store<S extends Store<S>>

The Checker Framework store restricts the type of abstract values it may contain.

package org.checkerframework.framework.flow;
abstract class CFAbstractStore<V extends CFAbstractValue<V>,
S extends CFAbstractStore<V, S>>
implements Store<S>
class CFStore extends CFAbstractStore<CFValue, CFStore>

An InitializationStore tracks which fields of the ‘self’ reference have been initialized.

package org.checkerframework.checker.initialization;
class InitializationStore<V extends CFAbstractValue<V>,
S extends InitializationStore<V, S>>
extends CFAbstractStore<V, S>

A NullnessStore additionally tracks the meaning of PolyNull.

package org.checkerframework.checker.nullness;
class NullnessStore extends InitializationStore<NullnessValue, NullnessStore>

2.2.7 Transfer functions

A transfer function (Section 2.2.7.3) is explicitly represented as a node visitor that takes a TransferInput
(Section 2.2.7.1) and produces a TransferResult (Section 2.2.7.2).

2.2.7.1 TransferInput The TransferInput represents the set of dataflow facts known to be true imme-
diately before the node to be analyzed. A TransferInput may contain a single store, or a pair of ‘then’ and
‘else’ stores when following a boolean-valued expression.

package org.checkerframework.dataflow.analysis;
class TransferInput<A extends AbstractValue<A>,
S extends Store<S>>

2.2.7.2 TransferResult A TransferResult is the output of a transfer function. In other words, it is the
set of dataflow facts known to be true immediately after a node. A Boolean-valued expression produces a
Conditional TransferResult that contains both a ‘then’ and an ‘else’ store, while most other Nodes produce
a RegularTransferResult with a single store.

package class org.checkerframework.dataflow.analysis;
abstract TransferResult<A extends AbstractValue<A>,
S extends Store<S>>
class ConditionalTransferResult<A extends AbstractValue<A>,
S extends Store<S>>
extends TransferResult<A, S>
class RegularTransferResult<A extends AbstractValue<A>,
S extends Store<S>>
extends TransferResult<A, S>

2.2.7.3 TransferFunction A TransferFunction is a NodeVisitor that takes an input and produces an
output.

package org.checkerframework.dataflow.analysis;
interface TransferFunction<A extends AbstractValue<A>,
S extends Store<S>>
extends NodeVisitor<TransferResult<A, S>, TransferInput<A, S>>

The Checker Framework defines a derived class of TransferFunction to serve as the default for most checkers.
The class constrains the type of abstract values and it overrides many node visitor methods to refine the
abstract values in their TransferResults.

package org.checkerframework.framework.flow;
abstract class CFAbstractTransfer<V extends CFAbstractValue<V>,
S extends CFAbstractStore<V, S>,
T extends CFAbstractTransfer<V, S, T>>
extends AbstractNodeVisitor<TransferResult<V, S>, TransferInput<V, S>>
implements TransferFunction<V, S>

class CFTransfer extends CFAbstractTransfer<CFValue, CFStore, CFTransfer>
The Initialization Checker’s transfer function tracks which fields of the ‘self’ reference have been initialized.

package org.checkerframework.checker.initialization;
class InitializationTransfer<V extends CFAbstractValue<V>,
T extends InitializationTransfer<V, T, S>,
S extends InitializationStore<V, S>>
extends CFAbstractTransfer<V, S, T>

The Regex Checker’s transfer function overrides visitMethodInvocation to special case isRegex and asRegex
methods.

package org.checkerframework.checker.regex;
class RegexTransfer extends CFAbstractTransfer<CFValue, CFStore, RegexTransfer>

2.2.8 Analysis

An Analysis performs iterative dataflow analysis over a control flow graph using a given transfer function.
Currently only forward analyses are supported.

package org.checkerframework.dataflow.analysis;
class Analysis<A extends AbstractValue<A>,

S extends Store<S>,

T extends TransferFunction<A, S>>

The Checker Framework defines a derived class of Analysis for use as the default analysis of most checkers.
This class adds information about the type hierarchy being analyzed and acts as a factory for abstract values,
stores, and the transfer function.

package org.checkerframework.framework.flow;
abstract class CFAbstractAnalysis<V extends CFAbstractValue<V>,
S extends CFAbstractStore<V, S>,
T extends CFAbstractTransfer<V, S, T>>
extends Analysis<V, S, T>

class CFAnalysis extends CFAbstractAnalysis<CFValue, CFStore, CFTransfer>

The Nullness Checkers’ analysis overrides the factory methods for abstract values, stores, and the transfer
function.

package org.checkerframework.checker.nullness;
class NullnessAnalysis extends CFAbstractAnalysis<NullnessValue,
NullnessStore, NullnessTransfer>

The RegexChecker’s analysis overrides the factory methods for abstract values, stores, and the transfer
function.

package org.checkerframework.checker.regex;
class RegexAnalysis extends CFAbstractAnalysis<CFValue, CFStore, RegexTransfer>

2.2.9 AnalysisResult

An AnalysisResult preserves the dataflow information computed by an Analysis for later use by clients. The
information consists of an AbstractValue for each node in the CFG and a Store that is valid at the start of
each Block. The AnalysisResult class can return AbstractValues for either Nodes or Trees and it can re-run
the transfer function to compute Stores that are valid immediately before or after any Tree.

package org.checkerframework.dataflow.analysis;
class AnalysisResult<A extends AbstractValue<A>,
S extends Store<S>>

2.2.10 AnnotatedTypeFactory

AnnotatedTypeFactorys are not part of the Dataflow Framework, per se, but they are parameterized by the
Dataflow Framework classes that they use.

package org.checkerframework.framework.type;
class AnnotatedTypeFactory implements AnnotationProvider

In the Checker Framework, dataflow analysis is performed on demand, one class at a time, the first time
that a ClassTree is passed to getAnnotatedType. This is implemented in the abstract class GenericAnno-
tatedTypeFactory with concrete implementation in BaseAnnotated TypeFactory.

package org.checkerframework.framework.type;

abstract class GenericAnnotatedTypeFactory<Checker extends BaseTypeChecker<?>,
Value extends CFAbstractValue<Value>,
Store extends CFAbstractStore<Value, Store>,
TransferFunction extends CFAbstractTransfer<Value, Store, TransferFunction>,

1 class Test {

2 void test(boolean b) {
3 int x = 2;

4 if (b) {

5 x = 1;

6 }

7 }

s }

Listing 1: A simple Java code snippet to introduce the CFG. Its CFG is depicted in Figure 1.

FlowAnalysis extends CFAbstractAnalysis<Value, Store, TransferFunction>>
extends AnnotatedTypeFactory

package org.checkerframework.common.basetype;
class BaseAnnotatedTypeFactory
extends GenericAnnotatedTypeFactory<CFValue, CFStore, CFTransfer, CFAnalysis>

I We should investigate whether we can optimize CFG generation for aggregate and compound checkers.

3 The Control-Flow Graph

This section describes the control-flow graph (CFG), which is used to represent a single method or field
initialization, and the translation from the abstract syntax tree (AST) to the CFG. (The Dataflow Framework
described here is designed to perform an intra-procedural analysis. This analysis is modular and every method
is considered in isolation.) We start with a simple example, then give a more formal definition of the CFG
and its properties, and finally describe the translation from the AST to the CFG.

As is standard, a control-flow graph in the framework is a set of basic blocks that are linked by control-flow
edges. Possibly less standard, every basic block consists of a sequence of so-called nodes, which correspond
to a minimal Java operation or expression.

Consider the method test of Listing 1 whose control-flow graph is shown in Figure 1. The if conditional
got translated to a conditional basic block (octagon) with two successors. There are also two special basic
blocks (ovals) to denote the entry and exit point of the method.

3.1 Formal Definition of the Control-Flow Graph

The control-flow graph models all paths that can possibly be taken by an execution of the method.

Definition 3.1 (Control-Flow Graph). A control-flow graph consists of a set of basic blocks and a set of
directed edges between these basic blocks, some of which are labeled.

Definition 3.2 (Basic Block). A basic block is a sequence of nodes, where the only control flow between the
nodes inside the basic block is sequential. Furthermore, there is no control flow occurring between those nodes
and nodes of other basic blocks, except between the last node of one block by and the first node of another
block bs, if ba is a successor of by. A basic block may have multiple successors.

Definition 3.3 (Types of Basic Blocks). There are four types of basic blocks in a control-flow graph:

x [VariableDeclaration]
2 [IntegerLiteral |
x =2 [Assignment]
b [LocalVariable]

x [LocalVariable]
1 [IntegerLiteral]
x=1 [Assignment]

Figure 1: The control-flow graph for Listing 1.

. Regular basic block. A regular basic block contains any non-empty sequence of nodes and has exactly
one successor. None of the nodes in the block can throw an exception at runtime.

. Special basic blocks. A special basic block contains the empty sequence of nodes (i.e., is empty) and
denotes either the entry or one of the exit blocks of a method. There are three types of special basic
blocks:

o Entry block. This basic block is the (only) entry point of the method and thus is the only basic
block without predecessors.

o Exit block. This basic block denotes the (normal) exit of a method, and it does not have successors.

o FExceptional exit block, which indicates exceptional termination of the method. As an exit block,
this block does mot have successors.

FEvery method has exactly one entry block, zero or one exit blocks, and zero or one exceptional exit
blocks. However, there is either an exit block or an exceptional exit block.

Is this an exclusive or? Or can a method have both a regular exit block and an exceptional exit
block? I think the latter is true.

. Exception basic block. An exception basic block contains exactly one node that might throw an
exception at runtime (e.g., a method call). There are zero or one non-exceptional successors, and one
or more exceptional successors (see 3.4). But in all cases there is at least one successor (regular or
exceptional), and only a basic block containing a throw statement does mot have a non-exceptional
successor.

. Conditional basic block. A conditional basic block does not contain any nodes and is used as a split
point after the execution of a node of boolean type. It has exactly two successors (both non-exceptional):
the then successor that is reached when the previous node evaluates to true and the else successor that
is reached when the previous node evaluates to false. There is always exactly a single predecessor block

for every conditional basic block, which is either a regular basic block or an exception basic block. In
both cases, the last node in the predecessor will be of boolean type and the boolean value controls which
successor of the conditional block is executed.

The Java implementation of the four block types above is described in Section 2.2.2.

In the visualizations used in this document (e.g., in Figure 1), special basic blocks are shown as ovals,
conditional basic blocks are polygons with eight sides, and any other basic block appears as a rectangle.

Definition 3.4 (Control-Flow Graph Edges). The basic blocks of a control-flow graph are connected by
directed edges. If by and by are connected by a directed edge (by,bs), we call by the predecessor of by, and we
call by the successor of by. In a control-flow graph, there are three types of edges:

1. Exceptional edges. An exceptional edge connects an exception basic block with its exceptional suc-
cessors, and it is labeled by the most general exception that might cause execution to take this edge
during runtime. Note that the outgoing exceptional edges of a basic block do not need to have mutually
exclusive labels; the semantics is that the control flow follows the most specific edge. For instance, if
one edge is labeled with type A and another is labeled with type B where B is a subtype of A, then the
execution only takes the first edge if the exception is of a subtype of 4, but not a subtype of B.

There is not necessarily a most specific exception type in the program text; in that case, does the
translation add a most specific case that will never be executed at run time?

In general, what is the relation of the ordering in source code to the one here?

There is at most one successor for every exception type.

2. Conditional edges. A conditional edge is a non-exceptional edge that connects a conditional basic
block with one of its successors, and is labeled with either “true” or “false”.

3. Regular, non-conditional edge. Any other edge is a regular edge, and does not carry a label. Only
regular basic blocks, the entry basic block, and exception basic blocks have outgoing regular edges.

Definition 3.5 (Nodes). A node is a minimal Java operation or expression. It is minimal in the sense
that it cannot be decomposed further into subparts between which control flow occurs. Fxamples for such
nodes include integer literals, an addition node (that performs the mathematical addition of two nodes) or a
method call. Control flow such as if and break are not represented as nodes. The full list of nodes is given
in Table 1 and several of them are described in more detail in Section 3.2.

It is important to note that, even though nodes can contain references to other nodes, it is only the “top-level”
node which is considered at that point in the basic block. In the example of the addition node, this means
that only the addition operation is to be executed, and its operands would occur earlier in the control-flow
graph (as they are evaluated first, before performing the addition).

In the visualization, a string representation of the node is used, followed by the node type in square brackets.
Note that the string representation often also includes more than just the “top-level” node. For instance, the
addition expression a + b[0]; will appear as “a + b[0] [NumericalAddition |” rather than “a” plus some
temporary variable. This is done for clarity, so that it is easy to see what expressions are summed up and
because we don’t create internal names for expression results.

Table 1 lists all node types in the framework. We use the Java class name of the implementation, but leave
out the suffix Node, which is present for every type. All classes are in package org.checkerframework.
dataflow.cfg.node.

10

Table 1: All node types in the Dataflow Framework.

Node type Notes Example
Node The base class of all nodes.
ValueLiteral The base class of literal value nodes.
BooleanlLiteral true
CharacterLiteral ’¢?
DoubleLiteral 3.14159
FloatLiteral 1.414fF
IntegerLiteral 42
LongLiteral 1024L
NullLiteral null
ShortLiteral 512
Stringliteral "memo"

Accessor expressions
ArrayAccess args[i]
FieldAccess f, obj.f
MethodAccess obj.hashCode
ThisLiteral Base class of references to this
ExplicitThisLiteral Explicit use of this in an expression
ImplicitThisLiteral Implicit use of this in an expression
Super Explicit use of super in expression. super(x, y)
LocalVariable Use of a local variable, either as l-value or

r-value
MethodInvocation Note that access and invocation are dis- hashCode()

tinct.

Arithmetic and logical operations.
BitwiseAnd a&b
BitwiseComplement ~b
BitwiseOr alb
BitwiseXor a~b
ConditionalAnd Short-circuiting. a&& b
ConditionalNot la
ConditionalOr Short-circuiting. allb
FloatingDivision 1.0 / 2.0
FloatingRemainder 13.0 % 4.0
LeftShift x << 3
IntegerDivision 3/ 2
IntegerRemainder 13 9% 4
NumericalAddition x+y
NumericalMinus -X
NumericalMultiplication X %y
NumericalPlus +x
NumericalSubtraction X -y
SignedRightShift x >> 3
StringConcatenate s + ".txt"
TernaryExpression c?7t : f
UnsignedRightShift x >>> 5

Continued on next page

11

Node type Notes Example
Relational operations
EqualTo X ==y
NotEqual x l=y
GreaterThan x>y
GreaterThanOrEqual X >=y
LessThan x <y
LessThanOrEqual x <=y
Case Case of a switch. Acts as an equality test.
Assignment x=1
StringConcatenateAssignment A compound assignment. s += ".txt"

ArrayCreation new doublel[]
ObjectCreation new Object()
TypeCast (float) 42
InstanceOf x instanceof Float

NarrowingConversion

Conversion nodes.
Implicit conversion.

StringConversion Might be implicit. obj.toString()
WideningConversion Implicit conversion.
Non-value nodes
Types appearing in expressions, such as
MyType.class
ArrayType
ParameterizedType
PrimitiveType
ClassName Identifier referring to Java class or interface. java.util.HashMap
PackageName Identifier referring to Java package. java.util
Throw Throw an exception.
Return Return from a method.
AssertionError assert x != null : "Hey"
Marker No-op nodes used to annotate a CFG with
information of the underlying Java source
code. Mostly useful for debugging and vi-
sualization. An example is indicating the
start/end of switch statements.
NullChk Null checks inserted by javac

VariableDeclaration

Declaration of a local variable

Table 1: All node types in the Dataflow Framework.

Table 2 shows all node types which can possibly throw an exception and the exception type to be thrown.
Java class name of nodes are simplified as with Table 1. All exception types in Table 2 are in package

java.lang.

Considering Error such as Out0fMemoryError or NoSuchFieldError, an exceptional edge of Error is not
created except for method or constructor invocation, assertion statement or throw statement. Because it’s

12

not recommended to catch it due to a critical situation which is not to able to execute JVM and handle in
an application.

Table 2: All node types could throw Exception and types to be thrown.

Node type Exception type

ArrayAccess NullPointerException, ArrayIndexOutOfBoundsException
FieldAccess NullPointerException

MethodAccess NullPointerException

MethodInvocation Throwable, types in throws clause of the signature
IntegerDivision ArithmeticException
IntegerRemainder ArithmeticException

ObjectCreation Throwable, types in throws clause of the signature
TypeCast ClassCastException

Throw Type of e when throw e

AssertionError AssertionError

Table 2: All node types could throw Exception and types to be
thrown.

ThisLiteral shouldn’t be considered a literal value node, because a use of this is not a literal expression.
I would change the name and group it with accessor expressions.

I Can StringConversion be implicit? I think so, but in any event discuss.

For each non-expression, explain its purpose, just like the explanation for Marker that still needs to be
fleshed out.

“Could be desugared” on “StringConcatenateAssignment” and “Conversion nodes” was confusing. What
is the design rationale for desugaring in the Dataflow Framework? Discuss that. Here, at least forward-
reference to Section 3.3.1, if that’s relevant.

More generally, for any cases that will be discussed in the text, add a forward reference to the section
with the discussion.

There is a StringConcatenateAssignmentNode. What about other compound assignments? Are they
desugared?

When we added Java 8 support, did we add additional nodes that are not listed here? Cross-check with
implementation.

I Why is it AssertionErrorNode instead of AssertNode?

3.2 Noteworthy Translations and Node Types

In this section we mention any non-straightforward translations from the AST to the CFG, or special
properties about individual nodes.

13

1 class Test {

2 int £f;

3

4 void test(Test x) {
5 x.f = 1;

6 }

7}

Listing 2: Control flow for a field assignment is not strictly left-to-right (cf. JLS §15.26.1), which is properly
handled by the translation. Its CFG is depicted in Figure 2.

x [LocalVariable]
1 [IntegerLiteral]

x.f [FieldAccess]

NullPointerExcerN
x.f=1 [Assignment]

Figure 2: The control-flow graph for Listing 2.

3.2.1 Program Structure

Java programs are structured using high-level programming constructs such as different variants of loops,
if-then-else constructs, try-catch-finally blocks or switch statements. During the translation from the AST
to the CFG some of this program structure is lost and all non-sequential control flow is represented by two
low-level constructs: conditional basic blocks and control-flow edges between basic blocks. For instance, a
while loop is translated into its condition followed by a conditional basic block that models the two possible
outcomes of the condition: either, the control flow follows the ‘true’ branch and continues with the loops
body, or goes to the ‘false’ successor and executes the first statement after the loop.

3.2.2 Assignment

As described in JLS §15.26.1, the execution of an assignment is in general not strictly left-to-right. Rather,
the right-hand side might be evaluated even if the left-hand side of the assignment causes an exception. This
semantics is faithfully represented in the CFG produced by the translation. An example of a field assignment
exhibiting this behavior is shown in Listing 2.

14

3.2.3 Postfix/Prefix Increment/Decrement

Both of postfix and prefix increment or decrement have a side effect to update the variable or field. To
represent this side effect, Dataflow Framework create an artificial assignment node like n = n + 1 for ++n
or n++. This artificial assignment node is stored in unaryAssignNodeLookup of ControlFlowGraph. The
assignment node is also stored in treeLookup for prefix increment or decrement so that the result of it is after
the assignment. However, the node before the assignment is stored in treeLookup for postfix increment or
decrement because the result of it should be before the assignment. For further information about node-tree
mapping, see Section 3.3.2 also.

3.2.4 Conditional stores

The Dataflow Framework extracts information from control-flow splits that occur in if, for, while, and switch
statements. In order to have the information available at the split, we eagerly produce two stores contained
in a ConditionalTransferResult after certain boolean-valued expressions. The stores are called the then
and else stores. So, for example, after the expression x == null, two different stores will be created. The
Nullness Checkers would produce a then store that maps x to @Nullable and an else store that maps x to
@NonNull.

The Dataflow Framework allows a maximum of two stores and when there are two distinct stores, they always
refer to the most recent boolean-valued expression. Stores are propagated through most nodes and they are
reversed for conditional not expressions. The transfer functions for many nodes merge conditional stores back
together because they cannot maintain the distinction between them. Merging just means taking the least
upper bound of the two stores and it happens automatically by calling TransferInput.getRegularStore.

3.2.5 Branches

The control flow graph represents all non-exceptional control-flow splits, or branches, as ConditionalBlocks
that contain no nodes. If there is one store flowing into a conditional block, then it is duplicated to both
successors. If there are two stores flowing into a conditional block, the then store is propagated to the block’s
then successor and the else store is propagated to the block’s else successor.

Consider the control flow graph generated for the simple if statement in Listing 3. The conditional expression
b1l immediately precedes the ConditionalBlock, represented by the octagonal node. The ConditionalBlock
is followed by both a then and an else successor block, after which control flow merges back together at the
exit block. The edge labels EACH_TO_EACH, THEN_TO_BOTH, and ELSE_TO_BOTH are flow rules described in
Section 4.5. As described above, the then store propagates to (both stores of) the block’s then successor
according to rule THEN_TO_BOTH and the else store propagates to (both stores of) the block’s else successor
according to rule ELSE_TO_BOTH. More precise rules are used to preserve dataflow information for short-
circuiting expressions, as described in Section 3.2.6.

3.2.6 Conditional Expressions

The conditional and (&&, cf. JLS §15.23) and the conditional or (||, cf. JLS §15.24) expressions are subject
to short-circuiting: if evaluating the left-hand side already determines the result, then the right-hand side is
not evaluated. This semantics is faithfully represented in the constructed CFG and more precise flow rules
(Section 4.5) are used to preserve additional dataflow information.

An example program using conditional or is shown in Listing 4. Note that the CFG correctly represents
short-circuiting. The expression b2 || b3 is only executed if b1 is false and b3 is only evaluated if bl and
b2 are false.

15

1 class Test {

2 void testIf (boolean bl) {
3 int x = 0;

4 if (b1) {

5 x = 1;

6 } else {

7 X = 2;

8 }

) }

10 }

Listing 3: Example of an if statement translated into a ConditionalBlock. Its CFG is depicted in Figure 3.

EACH_TO_EACH

X [VariableDeclaration |
0 [IntegerLiteral]

x =0 [Assignment]

bl [LocalVariable]

ACH_TO_EACH

else
LSE_TO_BOTH

then
THEN_TO_BOTH

[Local Variable] x [LocalVariable]
[IntegerLiteral] 2 [IntegerLiteral]
x=1 [Assignment] x =2 [Assignment]

X
1

EACH_TO_EACH /EACH_TO_EACH

Figure 3: The control-flow graph for Listing 3.

Observe in Figure 4 that the flow rule between the first conditional block and its then successor is THEN_TO_THEN
, rather than the default flow rule for such edges THEN_TO_BOTH, which is present on the edge from the last
conditional block to its then successor. THEN_TO_THEN is a more precise rule which propagates the then store
from the predecessor of the conditional block to the then store of the then successor and leaves the else store
of the successor untouched. This is a valid rule for propagating information along the short-circuit edge
of a conditional or expression because b1 || (b2 || b3) being false implies that b1 is false, so dataflow
information that obtains when b1 is true has no effect on the dataflow information obtains when b1 || (
b2 || b3) is false. To put it another way, if control reaches the block containing b1 || (b2 || b3) and

16

1 class Test {

2 void test(boolean bl, boolean b2, boolean b3) {
3 int x = 0;

4 if (b1 || (b2 || b3)) {

5 x = 1;

6 }

7 }

s }

Listing 4: Example of a conditional or expression (||) with short-circuiting and more precise flow rules. Its
CFG is depicted in Figure 4.

that expression is false, then control must have flowed along the else branches of both conditional blocks
and only the facts that obtain along those edges need to be kept in the else store of the block containing
bl || (b2 || b3).

3.2.7 Implicit this access

The Java compiler AST uses the same type (IdentifierTree) for local variables and implicit field accesses
(where this. is left out). To relieve the user of the Dataflow Framework from manually determining
the two cases, we consistently use FieldAccessNode for field accesses, where the receiver might be an
ImplicitThisNode. For instance, this is shown in the earlier example Listing 2.

I Idon’t see a implicitThisNode in Listing 2.

3.2.8 Assert statements

Assert statements are treated specially by the CFG builder because it is unknown at CFG construction time
whether or not assertions will be enabled when the program is run. When assertions are enabled, the dataflow
information gained by analyzing the assert statement can improve precision and allow the programmer to
avoid redundant annotations. However, when assertions are disabled, it would be unsound to assume that
they had any effect on dataflow information.

Our solution is to offer the user of the Dataflow Framework, and ultimately the user of the Checker Frame-
work, the option of stating that assertions are enabled or disabled. When assertions are assumed to be
disabled, no CFG Nodes are built for the assert statement at all. When assertions are assumed to be en-
abled, CFG Nodes are built to represent the condition of the assert statement and, in the else successor of
a ConditionalBlock, CFG Nodes are built to represent the detail expression of the assert, if any.

If assertions are not assumed to be enabled or disabled, then we generate a CFG that is conservative and
represents the fact that the assert statement may execute or may not. This takes the form of a Conditional-
Block that branches on a fake variable. For example, the code in Listing 5 produces the control flow graph in
Figure 5. The fake variable named assertionsEnabled#num0 controls the first ConditionalBlock. The then
successor of the ConditionalBlock is the same subgraph of CFG Nodes that would be created if assertions
were assumed to be enabled, while the else successor of the ConditionalBlock is the same, empty, subgraph
of CFG Nodes that would be created if assertions were assumed to be disabled.

I How should the user choose between the three possibilities?

17

IEACH_TO_EACH

x [VariableDeclaration |
0 [IntegerLiteral]

x=0 [Assignment]

bl [LocalVariable]

ACH_TO_EACH

else
ELSE_TO_BOTH

b2 [LocalVariable]

else
ELSE_TO_BOTH

then
THEN_TO_THEN

then

THEN_TO_THEN b3 [LocalVariable]

EACH_TO_EACH

(b2 11b3) [ConditionalOr]

EACH_TO_EACH

(b1 11 (b211b3)) [ConditionalOr]

EACH_TO_EACH

then
THEN_TO_BOTH

x [LocalVariable]
1 [IntegerLiteral]
x =1 [Assignment]

else
ELSE_TO_BOTH

EACH_TO_EACH

18

Figure 4: The control-flow graph for Listing 4.

1 class Test {

2 void testAssert(Object a) {

3 assert a != null : "Argument is null';
a }

5)

Listing 5: Example of an assert statement translated with assertions neither assumed to be enabled nor
assumed to be disabled. Its CFG is depicted in Figure 5.

EACH_TO_EACH

assertionsEnabled#numO [LocalVariable |

EACH_TO_EACH

then
THEN_TO_BOTH

a [LocalVariable]
null [NullLiteral]
(a!=null) [NotEqual]

else
ELSE_TO_BOTH

ELSE_TO_BOTH \THEN_TO_BOTH

"Argument is null" [StringLiteral]
AssertionError("Argument is null") [AssertionError]

EACH_TO_EACH

throw AssertionError("Argument is null") [Throw]

|AssertionError

<exceptional-exit>

Figure 5: The control-flow graph for Listing 5.

19

1 class Test {

2 void test(int x) {

3 switch (x) {

4 case 1:

5 int a = x;
6 break;

7 case 2:

8 int b = x;
9 default:

10 int ¢ = x;
11 break;

12 }

13 }

14 }

Listing 6: Example of a switch statement with case, default and fall through. Its CFG is depicted in Figure 6.

Why are there two basic blocks for the AssertionError and then the throw? Why are they not in the
same basic block, as there is no alternate control flow?

3.2.9 Varargs method invocation

In Java, varargs in method or constructor invocation is compiled as new array creation (cf. JLS §15.12.4.2).
For example, m(1, 2, 3) will be compiled as m(new int[1{1, 2, 3}) when the signature of m is m(int. ..

args). Dataflow Framework creates an ArrayCreationNode with initializer for varargs in the same way
as Java compiler. Note that it doesn’t create an ArrayCreationNode when the varargs is an array which is
same depth with the type of the formal parameter or null is given as actual varargs.

3.2.10 Default case and fall through for switch statement

Switch statement is handled as a chain of CaseNode and nodes in the case. CaseNode makes a branch by
comparing the equality of the expression of the switch statement and the expression of the case. Note that
the expression of a switch statement must be executed just only once at first of switch statement. To refer
its value, a fake variable is created and it is assigned to a fake variable. THEN_TO_BOTH edge goes to nodes
in the case and ELSE_TO_BOTH edge goes to next CaseNode. When a next is default case, it goes to nodes in
the default case. If a break statement is in nodes, it creates an edge to next node of the switch statement. If
there is any possibility of fall-through, an edge to the first of nodes in the next case is created after nodes in
the case. For example, the code in Listing 6 produces the control flow graph in Figure 6. The fake variable
named switch#numO is created and each of case nodes creates the branches.

3.2.11 Handling finally blocks

Control flow statements, like return, break, and continue, within try blocks will cause execution of the
finally block before continuing at the target of the jump. The Dataflow Framework models this behavior
by adding a jump to a duplicate of the finally block before the jump to the original target of the control flow
statement.

20

EACH_TO_EACH

switch#numO [VariableDeclaration]
switch#numO [LocalVariable |

x [LocalVariable]

switch#num0 = x [Assignment]

marker (start of switch statement) [Marker]
1 [IntegerLiteral]

case 1: [Case]

ACH_TO_EACH

then else
THEN_TO_BOTH ELSE_TO_BOTH

2 [IntegerLiteral]
case 2: [Case]

a [VariableDeclaration]
x [LocalVariable]

a=x [Assignment] EACH_TO_EACH

b [VariableDeclaration]
x [LocalVariable] else
EACH_TO_EACH b=x [Assignment] LSE_TO_BOTH

EACH_TO_EACH

¢ [VariableDeclaration]
x [LocalVariable]
c=x [Assignment]

ACH_TO_EACH

Figure 6: The control-flow graph for Listing 6.

21

3.3 AST to CFG Translation

This section gives a high-level overview of the translation process from the abstract syntax tree to the
control-flow graph as described in Section 3.1.

First, we define several entities, which will be used in the translation.

Definition 3.6 (Extended Node). In the translation process the data type extended node is used. An
extended node can be one of four possibilities:

o Simple extended node. An extended node can just be a wrapper for a node that does not throw an
exception, as defined in Definition 3.5.

Say how non-exception-throwing nodes are distinguished in Table Table 1. Fxception-throwing ones
need to include throw, call, field access, typecast, division, ...

e Exception extended node. Similar to a simple node, an exception extended node contains a node,
but this node might throw an exception at runtime.

e Unconditional jump. An unconditional jump indicates that control flow proceeds non-sequentially to
a location indicated by a target label.

o Conditional jump. A conditional jump can follow an extended mode that contains a node of boolean
type. It contains two target labels, one if the node evaluates to true and one for false.

Comparison of nodes and extended nodes. Nodes themselves never contain control flow information;
they only represent computation.

An extended node is a wrapper around a node that represents control flow information. It contains: a node,
a label, a predecessor, and a successor.

An extended node is temporarily used to keep track of some control flow information. Later, the basic block
data structures are created, and they represent the control flow. (And at that point the extended nodes are
discarded.)

Definition 3.7 (Label). A label is a marker that is used to refer to extended nodes. It is used only
temporarily during CFG construction.

The process of translating an AST to a CFG proceeds in three distinct phases.

1. Phase one. In the first phase, a single linear sequence of extended nodes is created. The control flow
is implicitly assumed to be sequential through the sequence of extended nodes, until a (conditional or
unconditional) jump is encountered in an if, for, while, or switch statement, in which case the jump
target decides where execution proceeds.

The labels used as targets of jumps are associated with positions in this sequence and are managed
by maintaining a binding function from labels to sequence positions. The advantage of having this
indirection is that one can create a label and associate with the next free position in the sequence,
without knowing which exact extended node will be placed there. Furthermore, labels can be created
and used before they are actually bound to their correct position in the sequence (e.g., when that
position is not yet known). At the end, the binding function can be used to resolve labels to extended
nodes.

Furthermore, phase one also computes a mapping from AST tree elements to nodes, as well as a set of
leaders. A leader is an extended node for which one of the following conditions applies:

o It is the first extended node in the sequence.

22

o It is the target of a jump (i.e. there is a label bound to the location of the node in the sequence).

o It is the first node following a jump.

2. Phase two. Phase two translates the linear representation to a control-flow graph by performing the
following transformations:

« Simple extended nodes are translated to regular basic blocks, where multiple nodes can be grouped
in one regular basic block.

o Exception extended nodes are translated to exception basic blocks with the correct edges.
o Unconditional jumps are replaced with edges between the correct basic blocks.

e Conditional jumps are replaced by a conditional basic block.

To greatly simplify the implementation, phase two is allowed to produce a degenerated control-flow
graph. In particular, the following deficiencies are possible:

e Regular basic blocks might be empty.

¢ Some conditional basic blocks might be unnecessary, in that they have the same target for both
the ‘then’ as well as the ‘else’ branch.

e Two consecutive, non-empty, regular basic blocks can exist, even if the second block has only
exactly one predecessor and the two blocks could thus be merged.

3. Phase three. In the third and last phase, the control-flow graph is transformed such that the de-
ficiencies remaining from phase two are removed. It is ensured that removing one kind of deficiency
does not create another degenerate case.

3.3.1 Desugaring

Desugaring means replacing complicated source language constructs by simpler ones, or removing syntactic
sugar from an input program. Originally, we intended for the control flow graph representation to be as
close as possible to the Java abstract syntax tree to simplify the mapping from tree to CFG node and back
and to reuse existing checker code written in terms of trees. However, we ran into several cases that were
better handled by desugaring.

o We decided to represent implicit conversion operations like boxing, unboxing, widening, and narrowing
as explicit CFG nodes because they change the type of a value. For example, implicit unboxing of an
Integer will be translated into a call to Integer.intValue. The pre-conversion type can be associated
with the original node and the post-conversion type can be associated with the explicit conversion node.
It also makes it possible for the transfer function to operate on the conversion nodes.

e Enhanced for loops are defined in terms of a complicated translation into simpler operations, including
field accesses, branches, and method calls that could affect dataflow information. It would be pro-
hibitively difficult for a checker writer to write a transfer function that correctly accounted for all of
those operations, so we desugar enhanced for loops.

e Once we decided to make conversion nodes explicit it made sense to desugar compound assignments.
A compound assignment like

Integer i; i += 3;

performs both an unboxing and a boxing operation on i. Desugaring all compound assignments greatly
reduced the total number of node classes.

23

In order to desugar code and still maintain the invariant that every CFG node maps to a tree, we needed to
create new AST tree nodes that were not present in the input program. Javac allows us to do this through
non-supported APIs and we wrote some utility classes in javacutil to make the process easier. The new
trees are created during CFG building and they persist as long as some CFG node refers to them. However,
the trees are not inserted into the AST, so they are not type-checked or seen by other tree visitors. Their
main purpose is to carry Java types and to satisfy AnnotatedTypeFactory methods.

A further complication is that these newly-introduced AST trees are not part of the TreePath when visiting
the AST. We work around this problem by giving the Annotated TypeFactory a mapping, called the pathHack
, from newly-introduced trees to their containing MethodTree and ClassTree.

Possibly even worse, we needed to create fake symbols for variables created when desugaring enhanced
for loops. Javac does not expose the ability to create a symbol, so we created a new subclass of Sym-
bol.VarSymbol called javacutil.tree.DetachedVarSymbol for this purpose. AnnotatedTypeFactory ex-
plicitly checks for DetachedVarSymbols in its DeclarationFromElement method.

3.3.2 Conversions and node-tree mapping

As mentioned in Section 3.3.1, we represent implicit Java type conversions such as boxing, unboxing, widen-
ing, and narrowing by explicit CFG nodes. This means that some AST tree nodes correspond to multiple
CFG nodes: a pre-conversion node and a post-conversion node. We will describe how the conversions work
and how the node-tree mappings are implemented.

Boxing and unboxing are represented in terms of calls to Java standard library methods. Boxing corresponds
to a call to BoxedClass.valueOf while unboxing corresponds to a call to BoxedClass.*Value. This allows
annotations on the library methods, as well as transfer functions for method invocations, to apply to the
conversions with no special work on the part of a checker developer.

Widening and narrowing conversions are still represented as special node types, although it would be more
consistent to change them into type casts.

I Is the last point a to-do item?

We maintain the invariant that a CFG node maps to zero or one AST tree and almost all of them map
to a single tree. But we can’t maintain a unique inverse mapping because some trees have both pre-
and post-conversion nodes. Instead, we remember two mappings, one from tree to pre-conversion node
and, for those trees that were converted, one from tree to post-conversion node. Both the CFGBuilder
and the ControlFlowGraph store two separate mappings. The Analysis class explicitly stores the tree to
pre-conversion node mapping as treeLookup and it indirectly uses the tree to post-conversion mapping in
Analysis.getValue(Tree). This has effectively hidden the distinction between pre and post-conversion
nodes from the Checker Framework, but in the long run it may be necessary to expose it.

4 Dataflow Analysis

This section describes how the dataflow analysis over the control-flow graph is performed and what the user
of the framework has to implement to define a particular analysis.

4.1 Overview

Roughly, a dataflow analysis in the framework works as follows. Given the abstract syntax tree of a method,
the framework computes the corresponding control-flow graph as described in Section 3. Then, a simple

24

forward iterative algorithm is used to compute a fix-point, by iteratively applying a set of transfer functions
to the nodes in the CFG. (For our initial application, type-checking, we do not need to support backwards
analyses; in the future, we may wish to do so.) These transfer functions are specific to the particular analysis
and are used to approximate the runtime behavior of different statements and expressions.

An analysis result contains two parts:

1. A node-value mapping (Analysis.nodeValues) from node to abstract value. Only nodes that can take
on an abstract value are used as keys. For example, in the Checker Framework, the mapping is from
expression nodes to annotated types.

2. A set of stores. Each store maps a flow expression to an abstract value. Each store is associated
with a specific program point. The framework keeps explicit stores for the start of each basic block
(Analysis.stores) and computes the store for other program points on the fly.

I There needs to be a definition of “program point”.

After an analysis has iterated to a fix-point, the computed dataflow information is maintained in an Analy-
sisResult, which can map either nodes or trees to abstract values.

4.2 Managing Intermediate Results of the Analysis
I This feels repetitive with the previous one. Combine them in whole or in part?

Conceptually, the dataflow analysis computes an abstract value for every node and flow expression'. The
transfer function (Section 4.4) produces these abstract values, taking as input the abstract values computed
earlier for sub-expressions. For instance, in a constant propagation analysis, the transfer function for addition
(+) would look at the abstract values for the left and right operand, and determine that the AdditionNode
is a constant if and only if both operands are constant.

There are two parts to the analysis result.

1. The node-value mapping maps Nodes to their abstract values. The framework consciously does not
store the abstract value directly in the node, to remove any coupling between the control-flow graph
and a particular analysis. This allows the control-flow graph to be constructed only once, and then
reused for different dataflow analyses.

2. The stores tracked by an analysis implement the Store interface, which defines the following operations:
o Least upper bound: Compute the least upper bound of two stores (e.g., at a merge-point in the
control-flow graph).

o Equivalence: Compare two stores if they are (semantically) different, which is used to determine
if a fix-point is reached in the dataflow analysis. Note that reference-equality is most likely not
sufficient.

¢ Copy mechanism: Clone a store to get an exact copy.

The store is analysis-dependent, but the framework provides a default store implementation which can
be reused. The default implementation is

1Certain dataflow analysis might choose not to produce an abstract value for every node. For instance, a constant propagation
analysis would only be concerned with nodes of a numerical type, and ignore other nodes.

25

org.checkerframework.framework.flow.CFStore

What information is tracked in the store depends on the analysis to be performed. Some examples of
stores include

org.checkerframework.checker.initialization.InitializationStore
org.checkerframework.checker.nullness.NullnessStore

Every store is associated with a particular point in the control-flow graph, and all stores are managed
by the framework. It maintains a single store for every basic block that represents the information
available at the beginning of that block. When dataflow information is requested for a later point in
a block, the analysis applies the transfer function to compute it from the initial store.

4.3 Answering Questions

After the flow analysis for a particular method has been computed, there are two kinds of information that
have been computed. Firstly, the node-value mapping stores an abstract value for every node, and secondly,
the information maintained in various stores is available.

Two kinds of queries are possible to the dataflow analysis after the analysis is complete:

1. For a given AST tree node, what is its abstract value? Both pre- and postconversion values can be
retrieved. A discussion of conversions can be found in Section 3.3.2.

2. For a given AST tree node, what is the state right after this AST tree node? Examples of questions
include:

e Which locks are currently held?

o Are all fields of a given object initialized?

The store may first need to be computed, as the framework does not store all intermediate stores but rather
only those for key positions as described in Section 4.2.

To support both kinds of queries, the framework builds a map from AST tree nodes (of type com.sun.source
.tree.Tree) to CFG nodes. To answer questions of the first type it is then possible to go from the AST
tree node to the CFG node and look up its abstract value in the node-value mapping (this is provided by the
framework). By default, the abstract value returned for a tree by Analysis.getValue(Tree) includes any
implicit conversions because it uses the mapping from tree node to post-conversion CFG node. To request
the pre-conversion value, one currently uses the ControlFlowGraph.treelookup map directly.

To support questions of the second kind, every node has a reference to the basic block it is part of. Thus,
for a given AST tree node, the framework can determine the CFG node and thereby the CFG basic block,
and compute the necessary store to answer the question.

4.4 Transfer Function
A transfer function has to provide the following:

o A method that returns the initial store for a method, given the list of arguments (as LocalVariableNode
s) and the MethodTree (useful if the initial store depends on the method signature, for instance).

26

I Why are the arguments to the method call LocalVariableNodes? Or should this be parameters?
Make clear whether this is about an invocation of a method or a method declaration.

o A transfer method for every Node type that takes a store and the node, and produces an updated store.
This is achieved by implementing the NodeVisitor<S, S> interface for the store type S.

These transfer methods also get access to the abstract value of any sub-node of the node n under
consideration. This is not limited to immediate children, but the abstract value for any node contained
in n can be queried.

4.5 Flow Rules

As mentioned in Section 3.2.4, dataflow analysis conceptually maintains two stores for each program point,
a then store containing information valid when the previous boolean-valued expression was true and an else
store containing information valid when the expression was false. In many cases, there is only a single store
because there is no boolean-valued expression to split on or there was an expression, but it yielded no useful
dataflow information. However, any CFG edge may potentially have a predecessor with two stores and a
successor with two stores.

We could simply propagate information from both predecessor stores to both successor stores, but that would
throw away useful information, so we define five flow rules that allow more precise propagation.

e EACH_TO_EACH is the default rule for an edge with a predecessor that is not a ConditionalBlock. It
propagates information from the then store of the predecessor to the then store of the successor and
from the else store of the predecessor to the else store of the successor.

e THEN_TO_BOTH is the default rule for an edge from a ConditionalBlock to its then successor. It
propagates information from the then store of its predecessor to both the then and else stores of the
then successor, thereby splitting the conditional store to take advantage of the fact that the condition
is known to be true.

e ELSE_TO_BOTH is the default rule for an edge from a ConditionalBlock to its else successor. It
propagates information from the else store of its predecessor to both the then and else stores of the
else successor, thereby splitting the conditional store to take advantage of the fact that the condition
is known to be false.

o THEN_TO_THEN is a special rule for a short-circuit edge from a ConditionalBlock to its then successor.
It only propagates information from the then store of its predecessor to the then store of its successor.
This flow rule is used for conditional or expressions because the else store of a || b is not influenced
by the then store of a.

e ELSE_TO_ELSE is a special rule for a short-circuit edge from a ConditionalBlock to its else successor.
It only propagates information from the else store of its predecessor to the else store of its successor.
This flow rule is used for conditional and expressions because the then store of a && b is not influenced
by the else store of a.

Note that the more precise flow rules THEN_TO_THEN and ELSE_TO_ELSE improve the precision of the store
they do not write to. In other words, THEN_TO_THEN yields a more precise else store of its successor by not
propagating information to the else store which might conflict with information already there, and conversely
for ELSE_TO_ELSE.

27

I What happens to the other store in these operations?

Currently, we only use flow rules for short-circuiting edges of conditional ands and ors. The CFG builder
sets the flow rule of each short-circuiting edge as it builds the CFG for the conditional and/or expression.

The dataflow analysis logic requires that both the then and the else store of each block contain some
information before the block is analyzed, so it is a requirement that at least one predecessor block writes the
then store and at least one writes the else store.

I How are these flow rules attached/changed?

4.6 Concurrency

By default, the Dataflow Framework analyzes the code as if it is executed sequentially. This is unsound if
the code is run concurrently. Use the —AconcurrentSemantics command-line option to enable concurrent
semantics.

In the concurrent mode, the dataflow analysis cannot infer any local information for fields. This is because
after a local update, another thread might change the field’s value before the next use.

An exception to this are monotonic type properties, such as the @MonotonicNonNull annotation of the
nullness type system. The meta-annotation @MonotonicQualifier declares that a qualifier behaves mono-
tonically, however it is not yet used to preserve dataflow information about fields under concurrent semantics.

I Do we have an issue filed for the last point above?

5 Example: Constant Propagation

As a proof-of-concept, I (Stefan) implemented a constant propagation analysis for local variables and integer
values. The main class is org. checkerframework.dataflow.cfg.playground.ConstantPropagationPlayground
. I describe the most important aspects here.

Abstract values. A class Constant is used as an abstract value, which can either be top (more than one
integer value seen), bottom (no value seen yet), or constant (exactly one value seen; in which case the value
is also stored).

The store. The store maps Nodes to Constant, where only LocalVariableNodes and IntegerLiteralNode
s are used as keys. Only those two nodes actually are of interest (there is no addition/multiplication/etc.
yet, and other constructs like fields are not yet supported by the analysis).

Two different instances of LocalVariableNode can be uses of the same local variable, and thus the equals
method has been implemented accordingly. Therefore, every local variable occurs at most once in the store,
even if multiple (equal) LocalVariableNodes for it exist.

The transfer function. The transfer function is very simple. The initial store contains top for all param-
eters, as any value could have been passed in. When an integer literal is encountered, the store is extended
to indicate what abstract value this literal stands for. Furthermore, for an assignment, if the left-hand side
is a local variable, the transfer function updates its abstract value in the store with the abstract value of the
right-hand side (which can be looked up in the store).

To illustrate how we can have different information in the then and else block of a conditional, I also
implemented another transfer function that considers the EqualToNode, and if it is of the form a == e for

28

1 class Test {

2 void test(boolean b, int a) {
3 int x = 1;

4 int y = 0;

5 if (b) {

6 X = 2;

7 } else {

8 X = 2;

9 y = a;

10 }

11 x = 3;

12 if (a == 2) {
13 X = 4;

14 }

15 }

16 }

Listing 7: Simple sequential program to illustrate constant propagation. Its CFG and intermediate analysis
results are depicted in Figure 7.

a local variable a and constant e, passes the correct information to one of the branches. This is also shown
in the example of Figure 7.

Example. A small example is shown in Listing 7 and Figure 7.

6 Default Analysis
I I feel like there is a missing cross-reference or two to this section.

6.1 Overview

The default flow-sensitive analysis org.checkerframework.framework.flow.CFAnalysis works for the
qualifier hierarchy of any checker defined in the Checker Framework. This generality is both a strength
and a weakness because the default analysis can always run but the facts it can deduce are limited. The
default analysis is extensible so checkers can add logic specific to their own qualifiers.

The default flow-sensitive analysis takes advantage of several forms of control-flow to improve the precision
of type qualifiers. It tracks assignments to flow expressions, propagating type qualifiers from the right-hand
side of the assignment. It considers equality and inequality tests to propagate the most precise qualifiers
from the left or right-hand side to the true (resp. false) successor. It also applies type qualifiers from method
postconditions after calls.

I Preconditions are not mentioned at all in this manual. How are they handled?

6.2 Interaction of the Checker Framework and the Dataflow Analysis

This section describes how the dataflow analysis is integrated into the Checker Framework to enable flow-
sensitive type checking.

29

{b=T, a=T}

x [VariableDeclaration]
1 [IntegerLiteral]
x=1 [Assignment]
y [VariableDeclaration]
0 [IntegerLiteral]
y=0 [Assignment]
b [LocalVariable]

then else

{b=T, a=T, y=0, x=1}

{b:T’NiiILZN:?’N x=1} x [LocalVariable]
x [LocalVariable] x2= 2[I?Zii%ﬁiﬂ]
2 [IntegerLiteral | [LocalVariable |
x=2 [Assignment] y :

a [LocalVariable]
y=a [Assignment]

/

{b=T, a=T, y=T, x=2}
x [LocalVariable]
3 [IntegerLiteral]

x=3 [Assignment]
a [LocalVariable]
2 [IntegerLiteral |

(a==2) [EqualTo]

then

{b=T, a=2, y=T, x=3}
x [LocalVariable] else
4 [IntegerLiteral]

x=4 [Assignment]

{b=T, a=T, y=T, x=T}

<exit>

Figure 7: The control-flow graph (including intermediate analysis results) for Listing 7.

30

A main purpose of a type factory is to create an AnnotatedTypeMirror based on an input tree node. Using
the results of the dataflow analysis, the type factory can return a more refined type than otherwise possible.

Type factories that extend from GeneralAnnotatedTypeFactory and set the constructor parameter useFlow

to true will automatically run dataflow analysis and use the result of the analysis when creating an
AnnotatedTypeMirror. The first time that a GenericAnnotatedTypeFactory instance visits a ClassTree,
the type factory runs the dataflow analysis on all the field initializers of the class first, then the bodies of
methods in the class, and then finally the dataflow analysis is ran recursively on the members of nested
classes. The result of dataflow analysis are stored in the GenericAnnotatedTypeFactory instance.

When creating an AnnotatedTypeMirror for a tree node, the type factory queries the result of the dataflow
analysis to determine if a more refined type for the tree node was inferred by the analysis. This is the first
type of query described in Section 4.3.

[found the below section confusing. I had a hard time putting my finger on it, but perhaps you could
re-read the section. As one minor issue, “very similar”: similar to what? “intermediary nodes”: what are
those? “we”: is that the analysis writer or the framework implementor (or the runtime system)?

Dataflow itself uses the type factory to get the initial AnnotatedTypeMirror for a tree node in the following
way.

For a given node n

e If it has no corresponding AST tree node, use “top” as its abstract value.

o If it has a corresponding AST tree node, ask the AnnotatedTypeFactory about the type of the tree
node. The factory will then use its checker-dependent logic to compute this type. A typical implemen-
tation will look at the type of sub-trees and compute the overall type based on the information about
these sub-trees.

Note that the factory recursively uses information provided by the flow analysis to determine the types
of sub-trees. There is a check in Analysis.getValue that the node whose type is being requested is
a sub-node of the node to which the transfer function is currently being applied. For other nodes, the
analysis will return null (i.e., no information) and the factory will return the flow-insensitive annotated

type.

6.3 The Checker-Framework Store and Dealing with Aliasing

Word of caution: The exact rules of what information is retained may or may not be implemented exactly
as described here. This is a good starting point in any case, but if very precise information is needed,
then the source code is very readable and well documented.

The Dataflow Framework provides a default implementation of a store with the class CFAbstractStore,
which is used (as CFStore) as the default store if a checker does not provide its own implementation. This
implementation of a store tracks the following information:

o Abstract values of local variables.

o Abstract values of fields where the receiver is an access sequence compose of the following:

— Field access.
— Local variable.

— Self reference (i.e., this).

31

— Pure or non-pure method call.

The most challenging part is ensuring that the information about field accesses is kept up to date in the face
of incomplete aliasing information. In particular, at method calls and assignments care needs to be taken
about which information is still valid afterwards.

The store maintains a mapping from field accesses (as defined in Section 6.3.1) to abstract values, and the
subsequent sections describe the operations that keep this mapping up-to-date.

There hasn’t been a good introduction of pure vs. non-pure methods. Maybe this is a good location for
a discussion? Introduce the purity annotations somewhere.

6.3.1 Internal Representation of field access

To keep track of the abstract values of fields, the Dataflow Framework uses its own representation of field
accesses (that is different from the Node type introduced earlier). This data type is defined inductively as
follows:

(FieldAccess)y = (Receiver) (Field) Java field (identified by its Element)
(Receiver)y == (SelfReference) this
| (LocalVariable) local variable (identified by its Element)
| (FieldAccess)
| (MethodCall) Java method call of a method
| (Unknown) any other Java expression
(MethodCall)y ::= (Receiver) ‘.’ (Method) ‘(" (Receiver)™ ‘)’

(Unknown) is only used to determine which information needs to be removed (e.g., after an assignment), but
no field access that contains (Unknown) is stored in the mapping to abstract values. For instance, (Unknown)
could stand for a non-pure method call, an array access, or a ternary expression.

6.3.2 Updating Information in the Store

In the following, let o be any (Receiver), x a local variable, f a field, m a pure method, and e an expression.
Furthermore, we assume to have access to a predicate might_ alias(o1, 02) that returns true if and only if 01
might alias 0o; see Section 6.3.2.5.

6.3.2.1 At Field Assignments For a field update of the form o1.f; = e, the dataflow analysis first
determines the abstract value ey, for e. Then, it updates the store S as follows.

1. For every field access os. f5 that is a key in S, remove its information if f; = f5 and o9 lexically contains
a (Receiver) that might alias o1.f as determined by the might_ alias predicate. Note that the “lexically
contains” notion for pure method calls includes both the receiver as well as the arguments.

This includes the case where 0; = 09 (that is, they are syntactically the same) and the case where o9
and o7.f might be aliases.

32

| Should the two occurrences of field f in this paragraph be f;?

2. S[Ol.fl] = €yal

6.3.2.2 At Local Variable Assignments For a local variable assignment of the form x = e, the
dataflow analysis first determines the abstract value ey, for e. Then, it updates the store S as follows.

1. For every field access 0s. f that is a key in S, remove its information if oy lexically contains a (Receiver)
that might alias x as determined by the might_ alias predicate.

2. S[z] = eval

6.3.2.3 At Other Assignments For any other assignment z = e where the assignment target z is not
a field or local variable, the dataflow analysis first determines the abstract value ey, for e. Then, it updates
the store S as follows.

1. For every field access 0. f2, remove its information if oy lexically contains a (Receiver) that might alias
z as determined by the might_ alias predicate.

6.3.2.4 At Non-Pure Method Calls A non-pure method call might modify the value of any field
arbitrarily. Therefore, at a method call, any information about fields is lost.

6.3.2.5 Alias Information The Checker Framework does not include an aliasing analysis, which could
provide precise aliasing information. For this reason, we implement the predicate might_alias as follows:

might_ alias(o1, 02) := (type(o1) <: type(oz) or type(o2) <: type(o1))

where type(o) determines the Java type of a reference o and <: denotes standard Java subtyping.

33

	Introduction
	Organization
	Projects
	Classes
	Nodes
	Blocks
	ControlFlowGraph
	FlowExpressions
	AbstractValue
	Store
	Transfer functions
	Analysis
	AnalysisResult
	AnnotatedTypeFactory

	The Control-Flow Graph
	Formal Definition of the Control-Flow Graph
	Noteworthy Translations and Node Types
	Program Structure
	Assignment
	Postfix/Prefix Increment/Decrement
	Conditional stores
	Branches
	Conditional Expressions
	Implicit this access
	Assert statements
	Varargs method invocation
	Default case and fall through for switch statement
	Handling finally blocks

	AST to CFG Translation
	Desugaring
	Conversions and node-tree mapping

	Dataflow Analysis
	Overview
	Managing Intermediate Results of the Analysis
	Answering Questions
	Transfer Function
	Flow Rules
	Concurrency

	Example: Constant Propagation
	Default Analysis
	Overview
	Interaction of the Checker Framework and the Dataflow Analysis
	The Checker-Framework Store and Dealing with Aliasing
	Internal Representation of field access
	Updating Information in the Store

