
Annotation File Format Specification

https://checkerframework.org/annotation-file-utilities/

January 7, 2026

Contents

1 Purpose: External storage of annotations 1

2 Grammar 2
2.1 Grammar conventions . 2
2.2 Java file grammar . 2

2.2.1 Package definitions . 3
2.2.2 Class definitions . 3
2.2.3 Field definitions . 5
2.2.4 Method definitions . 5

2.3 Bytecode Locations . 6
2.3.1 Bytecode offsets . 7
2.3.2 Source code indexes . 7
2.3.3 Code locations grammar . 7
2.3.4 AST paths . 9

2.4 Annotations . 15
2.4.1 Annotation definitions . 15
2.4.2 Annotation uses . 15

3 Example 17

4 Types and values 17

5 Alternative formats 19

1 Purpose: External storage of annotations

Java annotations are meta-data about Java program elements, as in “@Deprecated class Date { ... }”.
Ordinarily, Java annotations are written in the source code of a .java Java source file. When javac compiles
the source code, it inserts the annotations in the resulting .class file (as “attributes”).

Sometimes, it is convenient to specify the annotations outside the source code or the .class file.

• When source code is not available, a textual file provides a format for writing and storing annotations
that is much easier to read and modify than a .class file. Even if the eventual purpose is to insert
the annotations in the .class file, the annotations must be specified in some textual format first.

• Even when source code is available, sometimes it should not be changed, yet annotations must be
stored somewhere for use by tools.

• A textual file for annotations can eliminate code clutter. A developer performing some specialized
task (such as code verification, parallelization, etc.) can store annotations in an annotation file without
changing the main version of the source code. (The developer’s private version of the code could contain
the annotations, but the developer could move them to the separate file before committing changes.)

1

• Tool writers may find it more convenient to use a textual file, rather than writing a Java or .class

file parser.
• When debugging annotation-processing tools, a textual file format (extracted from the Java or .class

files) is easier to read and is easier for use in testing.

All of these uses require an external, textual file format for Java annotations. The external file for-
mat should be easy for people to create, read, and modify. An “annotation file” serves this purpose by
specifying a set of Java annotations. The Annotation File Utilities (https://checkerframework.org/
annotation-file-utilities/) are a set of tools that process annotation files.

The file format discussed in this document supports both standard Java SE 5 declaration annotations
and also the type annotations that are introduced by Java SE 8. The file format provides a simple syntax to
represent the structure of a Java program. For annotations in method bodies of .class files the annotation
file closely follows section “Class File Format Extensions” of the JSR 308 design document [Ern13], which
explains how the annotations are stored in the .class file. In that sense, the current design is extremely
low-level, and users probably would not want to write the files by hand (but they might fill in a template
that a tool generated automatically). As future work, we should design a more user-friendly format that
permits Java signatures to be directly specified. For .java source files, the file format provides a separate,
higher-level syntax for annotations in method bodies.

By convention, an annotation file ends with “.jaif” (for “Java annotation index file”), but this is not
required.

2 Grammar

This section describes the annotation file format in detail by presenting it in the form of a grammar. Sec-
tion 2.1 details the conventions of the grammar. Section 2.2 shows how to represent the basic structure of
a Java program (classes, methods, etc.) in an annotation file. Section 2.4 shows how to add annotations to
an annotation file.

2.1 Grammar conventions

Throughout this document, “name” is any valid Java simple name or binary name, “type” is any valid type,
and “value” is any valid Java constant, and quoted strings are literal values. The Kleene qualifiers “*” (zero
or more), “?” (zero or one), and “+” (one or more) denote plurality of a grammar element. A vertical bar
(“|”) separates alternatives. Parentheses (“()”) denote grouping, and square brackets (“[]”) denote optional
syntax, which is equivalent to “(. . .) ?” but more concise. We use the hash/pound/octothorpe symbol
(“#”) for comments within the grammar.

In the annotation file, besides its use as token separator, whitespace (excluding newlines) is optional
with one exception: no space is permitted between an “@” character and a subsequent name. Indentation
is ignored, but is encouraged to maintain readability of the hierarchy of program elements in the class (see
the example in Section 3).

Comments can be written throughout the annotation file using the double-slash syntax employed by Java
for single-line comments: anything following two adjacent slashes (“//”) until the first newline is a comment.
This is omitted from the grammar for simplicity. Block comments (“/* . . . */”) are not allowed.

The line end symbol “\n” is used for all the different line end conventions, that is, Windows- and Unix-
style newlines are supported.

2.2 Java file grammar

This section shows how to represent the basic structure of a Java program (classes, methods, etc.) in
an annotation file. For Java elements that can contain annotations, this section will reference grammar
productions contained in Section 2.4, which describes how annotations are used in an annotation file.

2

An annotation file has the same basic structure as a Java program. That is, there are packages, classes,
fields and methods.

The annotation file may omit certain program elements — for instance, it may mention only some of the
packages in a program, or only some of the classes in a package, or only some of the fields or methods of a
class. Program elements that do not appear in the annotation file are treated as unannotated.

2.2.1 Package definitions

At the root of an annotation file is one or more package definitions. A package definition describes a package
containing a list of annotation definitions and classes. A package definition also contains any annotations on
the package (such as those from a package-info.java file).

annotation-file ::=
package-definition+

package-definition ::=
“package” (“:”) | (name “:” decl-annotation*) “\n”
(annotation-definition | class-definition) *

Use a package line of package: for the default package. Note that annotations on the default package are
not allowed.

2.2.2 Class definitions

A class definition describes the annotations present on a class declaration, as well as fields and methods of
the class. It is organized according to the hierarchy of fields and methods in the class. Note that we use class-
definition also for interfaces, enums, and annotation types (to specify annotations in an existing annotation
type, not to be confused with annotation-definitions described in Section 2.4.1, which defines annotations to
be used throughout an annotation file); for syntactic simplicity, we use “class” for all such definitions.

Inner classes are treated as ordinary classes whose names happen to contain $ signs and must be defined
at the top level of a class definition file. (To change this, the grammar would have to be extended with a
closing delimiter for classes; otherwise, it would be ambiguous whether a field or method appearing after an
inner class definition belonged to the inner class or the outer class.) The syntax for inner class names is the
same as is used by the javac compiler. A good way to get an idea of the inner class names for a class is to
compile the class and look at the filenames of the .class files that are produced.

class-definition ::=
“class” name “:” decl-annotation* “\n”
typeparam-definition*
typeparam-bound*
extends*
implements*
field-definition*
staticinit*
instanceinit*
method-definition*

Annotations on the “class” line are annotations on the class declaration, not the class name.

Type parameter definitions The typeparam-definition production defines annotations on the declaration
of a type parameter, such as on K and T in

3

public class Class<K> {

public <T> void m() {

...

}

}

or on the type parameters on the left-hand side of a member reference, as on String in List<String>::size.

typeparam-definition ::=
The integer is the zero-based type parameter index.
“typeparam” integer “:” type-annotation* “\n”
compound-type*

Type Parameter Bounds The typeparam-bound production defines annotations on a bound of a type
variable declaration, such as on Number and Date in

public class Class<K extends Number> {

public <T extends Date> void m() {

...

}

}

typeparam-bound ::=
The integers are respectively the parameter and bound indexes of
the type parameter bound [Ern13].
“bound” integer “&” integer “:” type-annotation* “\n”
compound-type*

Implements and extends The extends and implements productions define annotations on the names of
classes a class extends or implements. (Note: For interface declarations, implements rather than extends
defines annotations on the names of extended interfaces.)

extends ::=
“extends” “:” type-annotation* “\n”
compound-type*

implements ::=
The integer is the zero-based index of the implemented interface.
“implements” integer “:” type-annotation* “\n”
compound-type*

Static and instance initializers The staticinit and instanceinit productions define annotations on code
within static or instance initializer blocks.

staticinit ::=
The integer is the zero-based index of the implemented interface.
“staticinit” “*” integer “:” “\n”
compound-type*

instanceinit ::=
The integer is the zero-based index of the implemented interface.
“instanceinit” “*” integer “:” “\n”
compound-type*

4

2.2.3 Field definitions

A field definition can have annotations on the declaration, the type of the field, or — if in source code —
the field’s initialization.

field-definition ::=
“field” name “:” decl-annotation* “\n”
type-annotations*
expression-annotations*

Annotations on the “field” line are on the field declaration, not the type of the field.
The expression-annotations production specifies annotations on the initialization expression of a field. If a

field is initialized at declaration then in bytecode the initialization is moved to the constructor when the class
is compiled. Therefore for bytecode, annotations on the initialization expression go in the constructor (see
Section 2.2.4), rather than the field definition. Source code annotations for the field initialization expression
are valid on the field definition.

2.2.4 Method definitions

A method definition can have annotations on the method declaration, in the method signature (return type,
parameters, etc.), as well as the method body.

method-definition ::=
“method” method-key “:” decl-annotation* “\n”
typeparam-definition*
typeparam-bound*
return-type?
receiver-definition?
parameter-definition*
variable-definition*
expression-annotations*

The annotations on the “method” line are on the method declaration, not on the return value. The method-
key consists of the simple name followed by a method descriptor, which is the signature in JVML format
(see JVMS §4.3.3, https://docs.oracle.com/javase/specs/jvms/se11/html/jvms-4.html#jvms-4.3.

3). For example, the following method

boolean foo(int[] i, String s) {

...

}

has the method-key :

foo([ILjava/lang/String;)Z

Note that the signature is the erased signature of the method and does not contain generic type infor-
mation, but does contain the return type. Using javap -s makes it easy to find the signature. The method
keys “<init>” and “<clinit>” are used to name instance (constructor) and class (static) initialization
methods. (The name of the constructor—that is, the final element of the class name—can be used in place
of “<init>”.) For both instance and class initializers, the “return type” part of the signature should be V

(for void).

5

Return type A return type defines the annotations on the return type of a method declaration. It is also
used for the result of a constructor.

return-type ::=
“return:” type-annotation* “\n”
compound-type*

Receiver definition A receiver definition defines the annotations on the type of the receiver parameter in
a method declaration. A method receiver is the implicit formal parameter, this, used in non-static methods.
For source code insertion, the receiver parameter will be inserted if it does not already exist.

Only inner classes have a receiver. A top-level constructor does not have a receiver, though it does have
a result. The type of a constructor result is represented as a return type.

receiver-definition ::=
“receiver:” type-annotation* “\n”
compound-type*

Parameter definition A formal parameter definition defines the annotations on a method formal param-
eter declaration and the type of a method formal parameter, but not the receiver formal parameter.

parameter-definition ::=
The integer is the zero-based index of the formal parameter in the method.
“parameter” integer “:” decl-annotation* “\n”
type-annotations*

The annotations on the “parameter” line are on the formal parameter declaration, not on the type of the
parameter. A parameter index of 0 is the first formal parameter. The receiver parameter is not index 0. Use
the receiver-definition production to annotate the receiver parameter.

2.3 Bytecode Locations

Certain elements in the body of a method or the initialization expression of a field can be annotated.
The expression-annotations rule describes the annotations that can be added to a method body or a field
initialization expression:

expression-annotations ::=
typecast*
instanceof *
new*
call*
reference*
lambda*
source-insert-typecast*
source-insert-annotation*

Additionally, a variable declaration in a method body can be annotated with the variable-definition rule,
which appears below.

Because of the differences between Java source code and .class files, the syntax for specifying code
locations is different for .class files and source code. For .class files we use a syntax called “bytecode
offsets”. For source code we use a different syntax called “source code indexes”. These are both described
below.

If you wish to be able to insert a given code annotation in both a .class file and a source code file, the
annotation file must redundantly specify the annotation’s bytecode offset and source code index. This can be

6

done in a single .jaif file or two separate .jaif files. It is not necessary to include redundant information
to insert annotations on signatures in both .class files and source code.

Additionally, a new typecast with annotations (rather than an annotation added to an existing typecast)
can be inserted into source code. This uses a third syntax that is described below under “AST paths”. A
second way to insert a typecast is by specifying just an annotation, not a full typecast (insert-annotation
instead of insert-typecast). In this case, the source annotation insertion tool generates a full typecast if
Java syntax requires one.

2.3.1 Bytecode offsets

For locations in bytecode, the annotation file uses offsets into the bytecode array of the class file to indicate
the specific expression to which the annotation refers. Because different compilation strategies yield different
.class files, a tool that maps such annotations from an annotation file into source code must have access to
the specific .class file that was used to generate the annotation file. The javap -v command is an effective
technique to discover bytecode offsets. Non-expression annotations such as those on methods, fields, classes,
etc., do not use a bytecode offset.

2.3.2 Source code indexes

For locations in source code, the annotation file indicates the kind of expression, plus a zero-based index to
indicate which occurrence of that kind of expression. For example,

public void method() {

Object o1 = new @A String();

String s = (@B String) o1;

Object o2 = new @C Integer(0);

Integer i = (@D Integer) o2;

}

@A is on new, index 0. @B is on typecast, index 0. @C is on new, index 1. @D is on typecast, index 1.
Source code indexes only include occurrences in the class that exactly matches the name of the enclosing

class-definition rule. Specifically, occurrences in nested classes are not included. Use a new class-definition
rule with the name of the nested class for source code insertions in a nested class.

2.3.3 Code locations grammar

For each kind of expression, the grammar contains a separate location rule. This location rule contains the
bytecode offset syntax followed by the source code index syntax.

The grammar uses “#” for bytecode offsets and “*” for source code indexes.

variable-location ::=
Bytecode offset: the integers are respectively the index, start, and length
fields of the annotations on this variable [Ern13].
(integer “#” integer “+” integer)
Source code index: the name is the identifier of the local variable.
The integer is the optional zero-based index of the intended local
variable within all local variables with the given name.
The default value for the index is zero.
| (name [“*” integer])

variable-definition ::=
The annotations on the “local” line are on the variable declaration,
not the type of the variable.

7

“local” variable-location “:” decl-annotation* “\n”
type-annotations*

typecast-location ::=
Bytecode offset: the first integer is the offset field and the optional
second integer is the type index of an intersection type [Ern13].
The type index defaults to zero if not specified.
(“#” integer [“,” integer])
Source code index: the first integer is the zero-based index of the typecast
within the method and the optional second integer is the type index of an
intersection type [Ern13]. The type index defaults to zero if not specified.
| (“*” integer [“,” integer])

typecast ::=
“typecast” typecast-location “:” type-annotation* “\n”
compound-type*

instanceof-location ::=
Bytecode offset: the integer is the offset field of the annotation [Ern13].
(“#” integer)
Source code index: the integer is the zero-based index of the instanceof

within the method.
| (“*” integer)

instanceof ::=
“instanceof” instanceof-location “:” type-annotation* “\n”
compound-type*

new-location ::=
Bytecode offset: the integer is the offset field of the annotation [Ern13].
(“#” integer)
Source code index: the integer is the zero-based index of the object or array
creation within the method.
| (“*” integer)

new ::=
“new” new-location “:” type-annotation* “\n”
compound-type*

call-location ::=
Bytecode offset: the integer is the offset field of the annotation [Ern13].
(“#” integer)
Source code index: the integer is the zero-based index of the method call
within the field or method definition.
| (“*” integer)

call ::=
“call” call-location “:” “\n”
typearg-definition*

reference-location ::=
Bytecode offset: the integer is the offset field of the annotation [Ern13].

8

(“#” integer)
Source code index: the integer is the zero-based index of the member
reference [Ern13].
| (“*” integer)

reference ::=
“reference” reference-location “:” type-annotation* “\n”
compound-type*
typearg-definition*

lambda-location ::=
Bytecode offset: the integer is the offset field of the annotation [Ern13].
(“#” integer)
Source code index: the integer is the zero-based index of the lambda
expression [Ern13].
| (“*” integer)

lambda ::=
“lambda” lambda-location “:” “\n”
parameter-definition*
variable-definition*
expression-annotations*

typearg-definition ::=
The integer is the zero-based type argument index.
“typearg” integer “:” type-annotation* “\n”
compound-type*

2.3.4 AST paths

A path through the AST (abstract syntax tree) specifies an arbitrary expression in source code to modify.
AST paths can be used in the .jaif file to specify a location to insert either a bare annotation (“insert-
annotation”) or a cast (“insert-typecast”).

For a cast insertion, the .jaif file specifies the type to cast to. The annotations on the “insert-typecast”
line will be inserted on the outermost type of the type to cast to. If the type to cast to is a compound type
then annotations on parts of the compound type are specified with the compound-type rule. If there are no
annotations on the “insert-typecast” line then a cast with no annotations will be inserted or, if compound
type annotations are specified, a cast with annotations only on the compound types will be inserted.

Note that the type specified on the “insert-typecast” line cannot contain any qualified type names. For
example, use Entry<String, Object> instead of Map.Entry<java.lang.String, java.lang.Object>.

source-insert-typecast ::=
ast-path is described below.
type is the un-annotated type to cast to.
“insert-typecast” ast-path“:” type-annotation* type “\n”
compound-type*

An AST path represents a traversal through the AST. AST paths can only be used in field-definitions
and method-definitions. An AST path starts with the first element under the definition. For methods this is
Block and for fields this is Variable.

An AST path is composed of one or more AST entries, separated by commas. Each AST entry is
composed of a tree kind, a child selector, and an optional argument. An example AST entry is:

Block.statement 1

9

The tree kind is Block, the child selector is statement and the argument is 1.
The available tree kinds correspond to the Java AST tree nodes (from the package com.sun.source.tree),

but with “Tree” removed from the name. For example, the class com.sun.source.tree.BlockTree is rep-
resented as Block. The child selectors correspond to the method names of the given Java AST tree node,
with “get” removed from the beginning of the method name and the first letter lowercased. In cases where
the child selector method returns a list, the method name is made singular and the AST entry also contains
an argument to select the index of the list to take. For example, the method com.sun.source.tree.Block-

Tree.getStatements() is represented as Block.statement and requires an argument to select the statement
to take.

The following is an example of an entire AST path:

Block.statement 1, Switch.case 1, Case.statement 0, ExpressionStatement.expression,

MethodInvocation.argument 0

Since the above example starts with a Block it belongs in a method-definition. This AST path would
select an expression that is in statement 1 of the method, case 1 of the switch statement, statement 0 of the
case, and argument 0 of a method call (ExpressionStatement is just a wrapper around an expression that
can also be a statement).

The following is an example of an annotation file with AST paths used to specify where to insert casts.

package p:

annotation @A:

class ASTPathExample:

field a:

insert-typecast Variable.initializer, Binary.rightOperand: @A Integer

method m()V:

insert-typecast Block.statement 0, Variable.initializer: @A Integer

insert-typecast Block.statement 1, Switch.case 1, Case.statement 0,

ExpressionStatement.expression, MethodInvocation.argument 0: @A Integer

And the matching source code:

package p;

public class ASTPathExample {

private int a = 12 + 13;

public void m() {

int x = 1;

switch (x + 2) {

case 1:

System.out.println(1);

break;

case 2:

System.out.println(2 + x);

break;

default:

System.out.println(-1);

}

10

}

}

The following is the output, with the casts inserted.

package p;

import p.A;

public class ASTPathExample {

private int a = 12 + ((@A Integer) (13));

public void m() {

int x = ((@A Integer) (1));

switch (x + 2) {

case 1:

System.out.println(1);

break;

case 2:

System.out.println(((@A Integer) (2 + x)));

break;

default:

System.out.println(-1);

}

}

}

Using insert-annotation instead of insert-typecast yields almost the same result — it also in-
serts a cast. The sole difference is the inability to specify the type in the cast expression. If you use
insert-annotation, then the annotation inserter infers the type, which is int in this case.

Note that a cast can be inserted on any expression, not just the deepest expression in the AST. For
example, a cast could be inserted on the expression i + j, the identifier i, and/or the identifier j.

To help create correct AST paths it may be useful to view the AST of a class. The Checker Framework
has a processor to do this. The following command will output indented AST nodes for the entire input
program.

javac -processor org.checkerframework.common.util.debug.TreeDebug ASTPathExample.java

The following is the grammar for AST paths.

ast-path ::=
ast-entry [“,” ast-entry]+

ast-entry ::=
annotated-type
| annotation
| array-access
| array-type
| assert
| assignment
| binary
| block
| case

11

| catch
| compound-assignment
| conditional-expression
| do-while-loop
| enhanced-for-loop
| expression-statement
| for-loop
| if
| instance-of
| intersection-type
| labeled-statement
| lambda-expression
| member-reference
| member-select
| method-invocation
| new-array
| new-class
| parameterized-type
| parenthesized
| return
| switch
| synchronized
| throw
| try
| type-cast
| type-parameter
| unary
| union-type
| variable-type
| while-loop
| wildcard-tree

annotated-type :: =
“AnnotatedType” “.” ((“annotation” integer) | “underlyingType”)

annotation ::=
“Annotation” “.” (“type” | “argument” integer)

array-access ::=
“ArrayAccess” “.” (“expression” | “index”)

array-type ::=
“ArrayType” “.” “type”

assert ::=
“Assert” “.” (“condition” | “detail”)

assignment ::=
“Assignment” “.” (“variable” | “expression”)

binary ::=

12

“Binary” “.” (“leftOperand” | “rightOperand”)

block ::=
“Block” “.” “statement” integer

case ::=
“Case” “.” (“expression” | (“statement” integer))

catch ::=
“Catch” “.” (“parameter” | “block”)

compound-assignment ::=
“CompoundAssignment” “.” (“variable” | “expression”)

conditional-expression ::=
“ConditionalExpression” “.” (“condition” | “trueExpression” | “falseExpression”)

do-while-loop ::=
“DoWhileLoop” “.” (“condition” | “statement”)

enhanced-for-loop ::=
“EnhancedForLoop” “.” (“variable” | “expression” | “statement”)

expression-statement ::=
“ExpressionStatement” “.” “expression”

for-loop ::=
“ForLoop” “.” ((“initializer” integer) | “condition” | (“update” integer) | “statement”)

if ::=
“If” “.” (“condition” | “thenStatement” | “elseStatement”)

instance-of ::=
“InstanceOf” “.” (“expression” | “type”)

intersection-type ::=
“IntersectionType” “.” “bound” integer

labeled-statement ::=
“LabeledStatement” “.” “statement”

lambda-expression ::=
“LambdaExpression” “.” ((“parameter” integer) | “body”)

member-reference ::=
“MemberReference” “.” (“qualifierExpression” | (“typeArgument” integer))

member-select ::=
“MemberSelect” “.” “expression”

method-invocation ::=

13

“MethodInvocation” “.” ((“typeArgument” integer) | “methodSelect”
| (“argument” integer))

new-array ::=
“NewArray” “.” (“type” | (“dimension” | “initializer”) integer)

new-class ::=
“NewClass” “.” (“enclosingExpression” | (“typeArgument” integer) | “identifier”
| (“argument” integer) | “classBody”)

parameterized-type ::=
“ParameterizedType” “.” (“type” | (“typeArgument” integer))

parenthesized ::=
“Parenthesized” “.” “expression”

return ::=
“Return” “.” “expression”

switch ::=
“Switch” “.” (“expression” | (“case” integer))

synchronized ::=
“Synchronized” “.” (“expression” | “block”)

throw ::=
“Throw” “.” “expression”

try ::=
“Try” “.” (“block” | (“catch” integer) | “finallyBlock” | (“resource” integer))

type-cast ::=
“TypeCast” “.” (“type” | “expression”)

type-parameter ::=
“TypeParameter” “.” “bound” integer

unary ::=
“Unary” “.” “expression”

union-type ::=
“UnionType” “.” “typeAlternative” integer

variable ::=
“Variable” “.” (“type” | “initializer”)

while-loop ::=
“WhileLoop” “.” (“condition” | “statement”)

wildcard ::=
“Wildcard” “.” “bound”

14

2.4 Annotations

This section describes the details of how annotations are defined, how annotations are used, and the different
kinds of annotations in an annotation file.

2.4.1 Annotation definitions

An annotation definition describes the annotation’s fields and their types, so that they may be referenced in
a compact way throughout the annotation file. Any annotation that is used in an annotation file must be
defined before use. (This requirement makes it impossible to define, in an annotation file, an annotation that
is meta-annotated with itself.) The two exceptions to this rule are the @java.lang.annotation.Target and
@java.lang.annotation.Retention meta-annotations. These meta-annotations are often used in annota-
tion definitions so for ease of use are they not required to be defined themselves. In the annotation file,
the annotation definition appears within the package that defines the annotation. The annotation may be
applied to elements of any package.

Note that these annotation definitions should not be confused with the @interface syntax used in a Java
source file to declare an annotation. An annotation definition in an annotation file is only used internally.
An annotation definition in an annotation file will often mirror an @interface annotation declaration in a
Java source file in order to use that annotation in an annotation file.

annotation-definition ::=
The decl-annotations are the meta-annotations on this annotation.
“annotation” “@”name “:” decl-annotation* “\n”
annotation-field-definition*

annotation-field-definition ::=
annotation-field-type name “\n”

annotation-field-type ::=
primitive-type is any Java primitive type (int, boolean, etc.).
These are described in detail in Section 4.
(primitive-type | “String” | “Class” | (“enum” name) | (“annotation-field” name)) “[]”?
| “unknown[]” “\n”

2.4.2 Annotation uses

Java SE 8 has two kinds of annotations: “declaration annotations” and “type annotations”. Declaration
annotations can be written only on method formal parameters and the declarations of packages, classes,
methods, fields, and local variables. Type annotations can be written on any use of a type, and on type
parameter declarations. Type annotations must be meta-annotated with ElementType.TYPE USE and/or
ElementType.TYPE PARAMETER. These meta-annotations are described in more detail in the JSR 308 speci-
fication [Ern13].

The previous rules have used two productions for annotation uses in an annotation file: decl-annotation
and type-annotation. The decl-annotation and type-annotation productions use the same syntax to specify an
annotation. These two different rules exist only to show which type of annotation is valid in a given location.
A declaration annotation must be used where the decl-annotation production is used and a type annotation
must be used where the type-annotation production is used.

The syntax for an annotation is the same as in a Java source file.

15

decl-annotation ::=
annotation must be a declaration annotation.
annotation

type-annotation ::=
annotation must be a type annotation.
annotation

annotation ::=
The name may be the annotation’s simple name, unless the file
contains definitions for two annotations with the same simple name.
In this case, the fully-qualified name of the annotation name is required.
“@”name [“(” annotation-field [“,” annotation-field]+ “)”]

annotation-field ::=
In Java, if a single-field annotation has a field named
“value”, then that field name may be elided in uses of the
annotation: “@A(12)” rather than “@A(value=12)”.
The same convention holds in an annotation file.
name “=” value

Certain Java elements allow both declaration and type annotations (for example, formal method parameters).
For these elements, the type-annotations rule is used to differentiate between the declaration annotations and
the type annotations.

type-annotations ::=
holds the type annotations, as opposed to the declaration annotations.
“type:” type-annotation* “\n”
compound-type*

Compound type annotations A compound type is a parameterized, wildcard, array, or nested type.
Annotations may be on any type in a compound type. In order to specify the location of an annotation
within a compound type we use a “type path”. A type path is composed one or more pairs of type kind and
type argument index.

type-kind ::=
“0” # annotation is deeper in this array type
| “1” # annotation is deeper in this nested type
| “2” # annotation is on the bound of this wildcard type argument
| “3” # annotation is on the i’th type argument of this parameterized type

type-path ::=
The integer is the type argument index.
type-kind “,” integer [“,” type-kind “,” integer]*

compound-type ::=
“inner-type” type-path “:” annotation* “\n”

The type argument index used in the type-path rule must be “0” unless the type-kind is “3”. In this case,
the type argument index selects which type argument of a parameterized type to use.

Type paths are explained in more detail, with many examples to ease understanding, in Section 3.4 of
the JSR 308 Specification.1

1https://checkerframework.org/jsr308/specification/java-annotation-design.html#class-file:ext:type_path

16

package p1;

import p2.*; // for the annotations @A through @D

import java.util.*;

public @A(12) class Foo {

public int bar; // no annotation

private @B List<@C String> baz;

public Foo(@D("spam") Foo this, @B List<@C String> a) {

@B List<@C String> l = new LinkedList<@C String>();

l = (@B List<@C String>)l;

}

}

Figure 1: Example Java code with annotations.

3 Example

Consider the code of Figure 1. Figure 2 shows two legal annotation files each of which represents its
annotations.

4 Types and values

The Java language permits several types for annotation fields: primitives, Strings, java.lang.Class tokens
(possibly parameterized), enumeration constants, annotations, and one-dimensional arrays of these.

These types are represented in an annotation file as follows:

• Primitive: the name of the primitive type, such as boolean.

• String: String.

• Class token: Class; the parameterization, if any, is not represented in annotation files.

• Enumeration constant: enum followed by the binary name of the enumeration class, such as enum

java.lang.Thread$State.

• Annotation: @ followed by the binary name of the annotation type.

• Array: The representation of the element type followed by [], such as String[], with one exception:
an annotation definition may specify a field type as unknown[] if, in all occurrences of that annotation
in the annotation file, the field value is a zero-length array.2

Annotation field values are represented in an annotation file as follows:

• Numeric primitive value: literals as they would appear in Java source code.

• Boolean: true or false.

2There is a design flaw in the format of array field values in a class file. An array does not itself specify an element type;
instead, each element specifies its type. If the annotation type X has an array field arr but arr is zero-length in every @X

annotation in the class file, there is no way to determine the element type of arr from the class file. This exception makes it
possible to define X when the class file is converted to an annotation file.

17

package p2:

annotation @A:

int value

annotation @B:

annotation @C:

annotation @D:

String value

package p1:

class Foo: @A(value=12)

field bar:

field baz: @B

inner-type 0: @C

method <init>(

Ljava/util/List;)V:

parameter 0: @B

inner-type 0: @C

receiver: @D(value="spam")

local 1 #3+5: @B

inner-type 0: @C

typecast #7: @B

inner-type 0: @C

new #0:

inner-type 0: @C

package p2:

annotation @A

int value

package p2:

annotation @B

package p2:

annotation @C

package p2:

annotation @D

String value

package p1:

class Foo: @A(value=12)

package p1:

class Foo:

field baz: @B

package p1:

class Foo:

field baz:

inner-type 0: @C

// ... definitions for p1.Foo.<init>

// omitted for brevity

Figure 2: Two distinct annotation files each corresponding to the code of Figure 1.

• Character: A single character or escape sequence in single quotes, such as ’A’ or ’\’’.

• String: A string literal as it would appear in source code, such as "\"Yields falsehood when

quined\" yields falsehood when quined.".

• Class token: The binary name of the class (using $ for inner classes) or the name of the primitive
type or void, possibly followed by []s representing array layers, followed by .class. Examples:
java.lang.Integer[].class, java.util.Map$Entry.class, and int.class.

• Enumeration constant: the name of the enumeration constant, such as RUNNABLE.

• Array: a sequence of elements inside {} with a comma between each pair of adjacent elements; a
comma following the last element is optional as in Java. Also as in Java, the braces may be omitted if
the array has only one element. Examples: {1}, 1, {true, false,} and {}.

The following example annotation file shows how types and values are represented.

package p1:

annotation @ClassInfo:

String remark

Class favoriteClass

18

Class favoriteCollection // it’s probably Class<? extends Collection>

// in source, but no parameterization here

char favoriteLetter

boolean isBuggy

enum p1.DebugCategory[] defaultDebugCategories

@p1.CommitInfo lastCommit

annotation @CommitInfo:

byte[] hashCode

int unixTime

String author

String message

class Foo: @p1.ClassInfo(

remark="Anything named \"Foo\" is bound to be good!",

favoriteClass=java.lang.reflect.Proxy.class,

favoriteCollection=java.util.LinkedHashSet.class,

favoriteLetter=’F’,

isBuggy=true,

defaultDebugCategories={DEBUG_TRAVERSAL, DEBUG_STORES, DEBUG_IO},

lastCommit=@p1.CommitInfo(

hashCode={31, 41, 59, 26, 53, 58, 97, 92, 32, 38, 46, 26, 43, 38, 32, 79},

unixTime=1152109350,

author="Joe Programmer",

message="First implementation of Foo"

)

)

5 Alternative formats

We mention multiple alternatives to the format described in this document. Each of them has its own merits.
In the future, the other formats could be implemented, along with tools for converting among them.

An alternative to the format described in this document would be XML. XML does not seem to provide
any compelling advantages. Programmers interact with annotation files in two ways: textually (when reading,
writing, and editing annotation files) and programmatically (when writing annotation-processing tools).
Textually, XML can be very hard to read; style sheets mitigate this problem, but editing XML files remains
tedious and error-prone. Programmatically, a layer of abstraction (an API) is needed in any event, so it
makes little difference what the underlying textual representation is. XML files are easier to parse, but the
parsing code only needs to be written once and is abstracted away by an API to the data structure.

Another alternative is a format like the .spec/.jml files of JML [LBR06]. The format is similar to Java
code, but all method bodies are empty, and users can annotate the public members of a class. This is easy
for Java programmers to read and understand. (It is a bit more complex to implement, but that is not
particularly germane.) Because it does not permit complete specification of a class’s annotations (it does
not permit annotation of method bodies), it is not appropriate for certain tools, such as type inference tools.
However, it might be desirable to adopt such a format for public members, and to use the format described
in this document primarily for method bodies.

The Checker Framework [DDE+11, Che] defines a format called “stub files”. A stub file is similar to
the .spec/.jml files described in the previous paragraph. It uses Java syntax, only allows annotations on
method signatures and does not require method bodies. A stub file is used to add annotations to method
signatures of existing Java classes. For example, the Checker Framework uses stub files to add annotations
to method signatures of libraries (such as the JDK) without modifying the source code or bytecode of the

19

library. A single stub file can contain multiple packages and classes. This format only allows annotations on
method signatures, not class signatures, fields, and method bodies like in a .jaif file. Further, stub files are
only used by the Checker Framework at run time, they cannot be used to insert annotations into a source
or classfile.

Eclipse defines its own file format for external nullness annotations: https://wiki.eclipse.org/JDT_

Core/Null_Analysis/External_Annotations#File_format. It works only for nullness annotations. It is
more compact but less readable than the Annotation File Format. It is intended for tool use, not for editing
by ordinary users, who are expected to interact with it via the Eclipse GUI.

References

[Che] Checker Framework website. https://checkerframework.org/.

[DDE+11] Werner Dietl, Stephanie Dietzel, Michael D. Ernst, Kıvanç Muşlu, and Todd Schiller. Building and
using pluggable type-checkers. In ICSE 2011, Proceedings of the 33rd International Conference
on Software Engineering, pages 681–690, Waikiki, Hawaii, USA, May 2011.

[Ern13] Michael D. Ernst. Type Annotations specification (JSR 308). https://checkerframework.org/
jsr308/, October 2013.

[LBR06] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. ACM SIGSOFT Software Engineering Notes, 31(3),
March 2006.

20

