CHECKER

framework

The Checker Framework Manual:
Custom pluggable types for Java

https://checkerframework.org/

Version 3.27.0 (1 Nov 2022)

For the impatient: Section[I.3](page[I5) describes how to install and use pluggable type-checkers.

https://checkerframework.org/

Contents

I TInfroducfion| 14
... 15

1.2 How it works: Pluggable types| 15
L3 T0sallalion] . - -« « ¢ v oot e e e e e 15
1.4 Example use: detecting a null pointerbug| oo o oo 16

[2° Using a checker| 17
2.1~ Where to write type annotations| o .o i et e e e e e e e e e e e e 17
22 Runningachecker| 18
..................................... 18

|ZZZ Summarz of commang-!lne 0§t10ns| 19
223 Checker auto-disCOVEry|. oo oo 22

224 Shorthand forbuilt-in checKersl. 22

2.3 What the checker guarantees| 22
[2.4 Tips about writing annotations| 23
........................... 23

4. oet started annotating legacy code 24

P43 Annotations indicate non-exceptional BERaVION« « « « o o oo 25
[2.4.4 Subclasses must respect superclass annotations|o 27

[2.4.5 What to do 1f a checker issues a warning about your code]. 27
[2-4.6 Calls to unannotated code (Iegacy LIbraries)] oo v v v v ie e 29

(3__Nullness Checker| 30
3.1 What the Nullness Checkerchecks| 30
3.1.1 Nullness Checker optional warnings| 31

B2 Nullness annofafions] o vttt e e e e e 31
[3.2.1 Nullness qualifiers| e 31
3.2.2 Nullness method annotations| Lo 32

3.2.3 Initialization qualifiers| L 33

24 Mapkeyqualifiers| L 33
....................................... 33
B3T TmplOIEQUATGTS . . . « « o o o o e e e e 33
3.3.2 Defaultannotationl L. e e e e 33
B33 Condiionalnullnessl o e e 34
[3.3.4 Nullness and array initialization| L 34
----------------------- 35
336 Run-timechecks fornullnessl. v v oo e e 35
[3.3.7 Inference of GNonNull and Nullable annotations| 35

3.4 Suppressing nullness warnings| L L L 35
[3.4.1 Suppressing warnings with assertions and method calls| 36

13.4.2 Null arguments to collectionclasses| 0000,
. xamples|o
3.5.1 Tinyexamples| e

EEEZ Examﬁle anno ate§ source co§e|

3.6 Tips for getting started| L e e e e
3.7 Other tools for nullness checking| o o
3.7.1 Whichtoolisrightforyou? e

[3:7.2 Tncompatibility note about FindBugs and SpotBugs @Nullable]
[B773 Relationship 10 Optional<Ts] . . o v v v v v v et e e e e e e e e e

13.8.1 Imtialization qualifiers| oo
13.8.2 How an object becomes mitialized| 0 0oL
3.8.3 @UnderInitializationexamples|

13.8.7 Howto handle warnings|
3.8.8 Suppressing warnings| i e e e e e e e e e e e e e e

[3:8.0 More details about initialization checking]

Map Key Checker]

4.1 Invoking the Map Key Checker]

EZ &] aE Eei annotat10ns| ...

4.3.2 Diagnosing the need for explicit @KeyFor on lower bounds|

B4 Examples|
5 Tnference of @ KeyFor annotat10ns|

Optional Checker for possibly-present datal

5.1 How torun the Optional Checker|.

. Optional annotations| L L e e e e e e e
|’5.3 What the Uptlonal Checker guarantees|

Interning Checker|

[6.1 Interming annotations|
[6IT Tnferning qualifiers|
6.1.2 Interning method and class annotations]

6.2 Annotating your code with @Interned|. oL L L

6.3.1 Theintern() methods|
6.3.2 Detault qualifiers and qualifiers for literals],
3. nternedDistinct: values not equals() to any other value|
6.4 What the Interning Checkerchecks|. o o oo
[6.4.1 Imprecision (false positive warnings) of the Interning Checker|

[65 Examples]
[6.6 Other nterning annotat10ns| ..

52
52
52
53
53
54
54
55

57
57
57
58

{7 Called Methods Checker for the builder pattern and more|

[/.3_Specifying yourcode|

. efault handling for Lombok an utovalue|o o
. sing the Calle ethods Checker for properties unrelated to builders|

[8.3 Example of how safe resource usageis verified| oL
................................

4T Owningfields|.
B3 Resource allasing] o e

[8.6 Creating obligations (how to re-assign a non-final owning field),.
8.6.1 Requirements at a call site of a @CreatesMustCallFor method

[8.6.2 Requirements at a declaration of a @CreatesMustCallFor method
[8.7 Ignored exception types|.

[T0 Tainting Checker]

[10.1 Talnting annotations|.

. 1ps on writing @Untainted annotations|.o e e e e e e

[T0.3 @Tainted and GUntainted can be used fOr MANy PUIPOSES] . . + « « v v v v v v v v v e e e e e
110.4 A caution about polymorphism and side effects| oo,

(11 _Lock Checker

122 Declaration annofafions]« o oo vt vt i e

[I1.3 Type-checkingrules|.
[TT31T Polymorphic qUalifiers| o v i e e

11.3.3 Primitive types, boxed primitive types, and Strings|

[T 34 (3verr1d1ng| ..

I11.4.1 Examples of @GuardedBy|. o o
11.4.2 @GuardedBy({*a”, “b”}) 1s not a subtype of @GuardedBy({“a”})|.

143 Examples of @Hold1ng|
[TT.4.4 Examples of @EnsuresLockHeld and @EnsuresCockHeldIf]

65
65
66
66
68
69
69

70
70
71
71
72
73
73
73
74
74
75
75

81
81
81
82
82

|I11.4.5 Example of @LockingFree, @ReleasesNoLocks, and @MayReleaselLocks| 90

|11.4.6 Polymorphism and method formal parameters with unknown guards| 91

[L1.5 More locking details| 92
|| | § | !wo types of locking: monitor locks and explicitlocks| 92
............................ 92
[[T533 Run-time checks forfocking] e 93
[11.5.4 Discussion of default qualifier] 93
I11.5.5 Discussion of GHOLIAING| v v v v v o e e e e e e e e e e e e 93
[[L6 Otherfockannotations] - ¢ o v v i e e 94
[11.6.1 Relationship to annotations in Java Concurrency in Practice| 94
.. 94

{12 Index Checker for sequence bounds (arrays and strings)| 96
112.1 Index Checker structure and annotations| v v v v i i i e e e e e e e e e e e 97
12.2 Lowerbounds| e 97
[12.3 Upperbounds| e 98
12.4 Sequence minimum lengths|. L L 100
125 Sequences of the same Tength] oo 101
... 102
(27 SUBSINE INAICES . - - -« « o o oo o oo e e e 102
[T2.7.1 The need for the @SubstringlndexFor annotation] « v v v v v v v v v e e e e 103
.. 104
|12.9 Annotating fixed-size data structures| L oL 104
(13 Regex Checker for regular expression syntax| 106
[13.1 Regex annotations|. e e e e e 106
[13.2 Annotating your code with @Regex|. 107
... 107
322 Caplufiig SIOUPS| . - -« « o o oo oo oo e 107
[T3.2.3 Concatenation of partial Tegular EXpressions| v o v v v i e e 107
[13.2.4 Testing whether a string is a regular expression| 108
[13.2.5 Suppressing Warnings|o u e e e e e e e e e e e e e 108

(14 Format String Checker| 109
[14.1 Formatting terminology|. e 109
[14.2 Format String Checker annotations| 109
4.2. sonversion Categories| i e e e e e e e e e e e e e 110

4.2.2 Subtyping rules for @Format|. L 111

[T43 What the Format String Checkerchecks] 112
113

113

114

14.5 @FormatMethod| 114
114.6 Testing whether a format stringisvalid|. 0 oo oo oo 114
(15 Internationalization Format String Checker (I18n Format String Checker)| 116
[I5.1 Internationalization Format String Checker annotations| 116
[T5.2 Conversion CalegOIIES| v v v e e e e e e 117
[15.3 Subtyping rules for @T18nFormat| L L 117
[15.4 What the Internationalization Format String Checkerchecks| 118
M35 RESOUICETIES - - - « « v v v v e e e e e e e e e e e e 119
|15.6 Running the Internationalization Format Checker| 120

1157 Testing whether a string has an 118n formattype|. oL,
|115.8 Examples of using the Internationalization Format Checker|

(16 Property File Checker|
116.1 General Property File Checker]
|116.2 Internationalization Checker (I18n Checker)[.

[16.2.2 Running the Internationalization Checkery
[16.3 Compiler Message Key Checker] et e

(17 Signature String Checker for string representations of types|

[I7.1 Signature annotations|
[T7.2 What the Signature Checkerchecks|

[I8_GUI Effect Checker]

118.3 Running the GUI Effect Checker| o oo o
18.4 Annotationdefaults| Lo

[I8.5 Polymorphic effects|.

................................

[18°3.3 Subclassing a specific instantiation of an effect-polymorphic type]
|18.5.4 Subtyping with polymorphiceffects| L oo oL,

19.1 Units annotations] o 0 e e e e e e e e e e e e e e

[19.4 Running the Units Checker]
[TO5 Suppressing Warnings| o . v vt vt e e e
[19.6 Referencesl

20.1.1 Default qualifiers|

[20.2 Prohbited operations|
20.2.1 Rationalel

20.3 Utility routines for manipulating unsigned values| o oo,
20.4 Local typerefinement| L
[20.5 Other signedness annotations| o ..ot e e e e e e e e

[2T Purity Checker]

[21.1 Purity annotations| L e e e e

[21.2 Purity annotations are trusted|
|Z | 3 Qverr@lng methods must respect spemﬁcatlons n superclasses|

RT.4 Suppressing wariings| v o vt i e e e e e

122
122
123
123
123
123

125
125
127

128
129
129
129
129
130
130
130
131
131
132

133
133
134
135
135
136
136

137
137
138
138
138
139
139
140
140

22 Constant Value Checker 143

R2.1 Annotations] e e e e e 143
[22.1.1 Type Annotations|. 143

2.2 Other constant value annofations]« « . . e e e e e e e 144
[22.2.1 Compile-time execution of €Xpressions| 145

2222 @StaticallyExecutable methods and the classpath|. 145

W oSl L e e e e 146

[22.4 Unsoundly ignoring overflow| 146
[22.5 Strings can be null in CONCATENATIONS|« v v v v i et e e e e e 147
23 Returns Receiver Checker 148
P31 Annotations] e 148
[23.2 AutoValue and Lombok Support] 148
24 Reflection resolufion] 150
150

151

151

152

153

155

155

155

156

156

157

[26 Aliasing Checker| 158
[26.1 Alasing annotations| 158
P62 LeakiNg COMMERES) . . - - - - o o o o oo e e 159
[26.3 Restrictions on where GUnique may B WIITED] o v v v v v v v e e e e e 160
26.4 Aliasing type refinement] e e e 160
162
R7.1 Must Call annotationsl e e e e e e e 162
[27.2 Writing @MustCall/@InheritableMustCallonaclass| 163
[27.3 Assumptions aboutreflection| L 163
[27.4 Type parameter bounds often need to be annotated|. 163

[28 Subtyping Checker 165
8.1 Using the Subtyping Checker] 165

. ompiling your qualifiers and your project| L. 166

PB.12 Suppressing warnings from the Subtyping CHEKE] . - - - « -« o e v oo oo e e oo 166

8.2 Subtyping Checker example] 166
28.3 Type aliases and typedefs| L 168

[29 Third-party checkers| 170
29.1 Determinism checker e 170
29.2 Constant Value Inference (Interval Inference)| 170
293 CryptoChecker] 170
|Z§ E EWS crypto policy compliance checker| o oL L oo 171
P95 AWS KMS compliance GReckel] . - .« « « « o o o o oo e e 171

29.7 JaTyC typestate checker|. L 171

... 171
29.9 Nullness Rawness Checker

[29.11Practical Immutability For Classes And Objects (PICO)[. 172
29.12Read Checker and Cast Checker for ensuring that EOF 1s recognized| 172
[29.130ntology type system| 172
9.14Glacier: Class immutability|. 172
29.15SQL checker that supports multiple dialects| 172
0.16Immutability checkers: IGJ, OIGJ, and Javarl| 173
0. T7JCTy bt COMpUtation over encrypted Qatal . - . .« « o o o o e e 173
29.18 DroidInfer: information flowl 173
29.19Error Prone linter] L e e e e e e e e e e e e e e 173
29.20SPARTA 1nformation flow type-checker for Android| 173
................................. 173
.. 174
29.23EnerS checker] e 174
[29.24Relm immutability] 174
[29:25SFlow x Relm for information flow and reference immutability] 174
[9.26Generic Universe Types CRecken] - - - - - -« - -« o e 174
P0.27Salety-CIitical Java CRECKET] - » .« « « o o e oo e e e e 174
[29.28Thread locality checker] 174
29.29Units and dimensions checkerl 174
[29.30Typestate checkers| 175
[29.30.1 Comparison to flow-sensitive type renement] o . v v v v i v it 175

30 Generics and polymorphism| 176
130.1 Generics (parametric polymorphism or type polymorphism){ 176
ET) | . | an BYPeS| . v o e e e e e e e e 176
[30.T.2 Restricting instantiation Of a GENeric Class| o v o v v i et e 176
130.1.3 "Type annotations on a use of a generic type variable| 0L, 178
130.1.4 Annotations on wildcards| 178
30.1.5 Examples of qualifiers on a type parameter| 179

0.1.6 Covariant type parameters| i i e e e e e e e e e 180
[0.1.7_ Method type argument inference and type qUalifiers. 180
BOT8 The BOMOm 0yD8] - - - - - - -« e oo e 181

[30.2 Qualifier polymorphism for methods| L o 181
30.2.1 Using polymorphic qualifiers in a method signature|. 181

2. elationship to subtyping and generics| o 182

|§UZ§ []Slng mu!tlﬁ!e Eo!imo@[_nc qualifiers in a method signaturef L 182
B0.2.4 Using a single polymorphic qualifier i a method SIgRATe] « « o o oo e e e 182

[30.3 Class qualifier parameters|. e e e e e 184
30.3.1 Resolving polymorphism when the receiver type has a polymorphic qualifieff 184

0.3.2 Using class qualifier parameters in the typeofafield 184

0.3. ocal variable defaults for types with qualifier parameters| 185

0.3.4 Qualifier parameters by default|. o 185
B03.5 Types with qualifier parameters as [ype ATEUMENTS] . . .« « « « o o o o oo e e e 185

(31 Advanced type system features| 187

BI.T Invariant array types| o o e e e e e e e e 187
31.2 Context-sensitive type inference for array constructors| 187
B3 Upper bound of qualifiers on uses of a given fype (annofafions on a class declarafion)] 188
. e effective qualifier on a type (defaults and inference)l 189
BT.5 Default qualifier For UNannotated TyPes] - - - « - -+« « e o e e e 189
[31.5.1 Defaultforuseofatypel e 190
[31.5.2 Controlling defaults in source code] 190
B153 Defaulting rules and CLIMBIO O] . - « .« « « « v o o eoee e e e e e 191
BI34 Inherteddefaults] 192
31.5.5 Inherited wildcard annotations| L 193
[31.5.6 Default qualifiers for .class files (library defaults)| 193

1.6 _Annotations on constructors] e e e e 194
1.6.1 Annotations on constructor declarations| o0 194
131.6.2 Annotations on constructor invocations| e 194

[31.7 Type refinement (flow-sensitive type qualifier inference)] 195
BL7T Type roRmement oxamples] - . . o« oo 195
[31.7.2 Typerefinement behavior]. 195
31.7.3 Whichtypesarerefined| 196
................................ 196
BT.7.5_Side clfects, determinism, purity, and fype reRnement 197
BLTO ASSEITONS . - - ¢ v o v v et e e e e e 199

[31.8 Writing Java expressions as annotation arguments| e e e e e e e 199
B1.9 Fieldinvariants| e 201
BL10Unused fieldsl o o e 201
B110.1 @Unused annotation] e e e e e 202

[32 Suppressing warnings| 203
132.1 Q@SuppressWarnings annotation]t i it e e e e e e e e e 203
[32.1.1 @SuppressWarnings symtax|. 204
[32.1.2 Where @SuppressWarnings can be WIIteN| o o v v v v v v e e e e e e e 204
[32.1.3 Good practices when suppressing warnings|o e 205

[32.2 @AssumeAssertion sSiring in an assert MESSAZE| v . .ot i 206
uppressing warnings and defensive programming| 206

.3 -AsuppressWarnings command-line option| oo 208
[32:4 —AskipUses and —AonlyUses command-lineoptions| 208
[B23 —AskipDefs and —AonlyDefs command-INE OPHONS| v v v vt v i e e e et e 208
[32.6 -Alint command-line option|. L. e e 209
[32.7 Change the specification of amethod|. 0 0L 209
.. 209
B2.0 Checker-speciic MECRAMISIS] . - - - « « « « « o o e o e e e e e 210
[33 Type inference| 211
[33.1 Typeinferencetools|. 211
B3.2 WHOIe Program INFerence] - . .« o o o oo 212
[33.3 Running whole-program inference on a single project] v o v v i vt i 212
[33.3.1 Requirements for whole-program inference scripts| 213

33.4 Running whole-program inference on many projects| 214
[53.5 Whole-program iference thal [uSerts AnNOMUONS 10 SOURCE COdE . . - . . . - 215
---------------------- 215
B3.6.1 Whole program ITerence 1ENotes Some Code] . . » » « « « o o o oo e 216
[33.6.2 Manually checking whole-program inference results| 216

[33.7 How whole-program inference works| 216
[33.8 'Type inference compared to whole-program analyses| 0oL 217
(34 Annotating libraries| 218
[34.1 Tips for annotating alibrary| 219
34.1.1 Don’tchangethecode| 219
[34.1.2 Library annotations should reflect the specification, not the implementation| 219

EE | 3 Eegort bugsupstream| 219
[34.1:4 Fully annotate the Tibrary, or indicate which parts youdidnof] 219
B4T35 Verify your annotations]. oo v vt e e e 220

[34.2 Creating an annotated library| 220
[34.3 Creating an annotated JDK| o L oo 221
B4.4 Compiling partially-annofafed TBIames] oo 221
[B4.4.1 The -AuseConservativeDefaultsForUncheckedCode=source,bytecode command-line |

| argUMENt e e e e e e e e e e e e 221
34.5 Usingstubclasses|. e 222
[34.5.1 Usingastubfile] 222

4.5.2 Multiple specifications foramethod| o oo oo 222
[34.5.3”Stub methods in subclasses of the declaring class| 223
BE34 SwhAleformall . . - .« o o oo e e e 224
34.5.5 Creatingastubfile| 224
[34.5.6 Distributing stub files|. L 225
[34.5.7 Troubleshooting stub libraries| 225

34.6 Ajavafiles|o e 226
B461 UsinganAjavafile] 226
[B4.6.2 Corresponding source filesand ajava files| 227

134.7 Troubleshooting/debugging annotated librartes| oo, 227
35 How to create a new checkerl 229
35.1 How checkers build on the Checker Frameworkl 230
35.2 Thepartsof achecker]. 230
[35.3 Compiling and using a custom checker|. 0 L 231
.. 231
.5 Annotations: Type qualifiers and hierarchy|. 233
B55.1 Dofining the type QUATTRETS] . - -« « « « o o o oo e e 233
[35.5.2 Declaratively defining the qualifier hierarchy| 234
[35.5.3 Procedurally defining the qualifier hierarchy|. 235
.................................. 236
.. 236
................................... 236
B55.7 Completencss of the type Merarchy] . . . « « o o o o oo e 236
135.5.8 Annotations whose argument 1s a Java expression (dependent type annotations)| 237
[35.5.9 Repeatable annotations| 238
.................................. 238
................................. 238
B5.62 Bundling muliple CRECKETS] . - . « « « o o o oo e e 239
[35.6.3 Providing command-lineoptions|. L 239

[35.7 Visitor: Typerules| 240
BSTZT ASTtraversall o o oot e e e e e 241
[35.7.2 Avoid hardcoding|. 241

B58 Type factory: Type IMIOAUCHONTUIE]. . « « + « « o o o oo oo e e 241
[35.8.1 Procedurally specifying type introductionrules| 241

10

[35.9 Dataflow: enhancing flow-sensitive type refinement| 242

[35.9.1 Determine expressions to refine the typesof| 243

[35.9.2 Createrequiredclass| 243

35.9.3 Override methods that handle Nodes of interest

[35.9.4 Implement the refinement| oL Lo 244

B5.9.5 Disabling Mow-SenSItve THTOTONCE] . « « « « « o o e oo e e e 245
35.10Annotated JDK and other annotated librartes|. oo oL 246
[B5.11Testing framework| 246

[B512Debugging OptonS| 246
|§§ | Z | Emount of detail iInmessages| L 247

... 247
BSI23Swband IDKTIBIAMES - - -« « o v v ot e et e e e 247
[35.12.4 Progress tracing|. L. e e e e e e e e 247
[35.12.5 Saving the command-line argumentstoafile] 248
.................................. 248
................................ 249
BEIZBERAIDIN - -« » - . o o o o 249
[35.12.9 Using an external debugger]. 249

[35.13Documenting the checker| L 250
.14javac implementation survival guide| Lo 250
............................. 251
B5.14.2 How a checker fits in the compiler as ah ANAOANON Processon . . . « « « v o o o o e o . 252
[35.15Integrating a checker with the Checker Framework| 252
[36 Building an accumulation checker| 253
36.1 Publications| 254
[37 Integration with external tools| 255
BZIANdrold o o o 255
[37.2 Android Studio and the Android Gradle Plugin| 255
... 256
... 257
BZ3ANCGAsK . . - o o o o 257
[37.3.1 Explanation|. 258
BZABUCK o 258
[37.4.1 Troubleshooting| e 259

[37.5 Command line, via Checker Framework javac wrapper] 259
. ommand line, via JDK javac|o 260
... 261
... 261
... 263
37.7.1 Usingan Anttaskl. 263
[37.7.2 Troubleshooting Eclipse| o 263
BZEGradlel o o o e 263
... 263
[37.9.1 Running a checker on every IntelliJ compilation|. 263
[37.9.2 Running a checker on every IntelliJ changeorsave| 264
[37.10javac diagnostics WIappPer|. o ..o 264
BZIILomboK o o ot o 264
[37.11.1 Annotations on generated code|.o 264
B711.2 Type-checking code with LomboK aMNOMHONS| . » - - .« « « « o o o oo e e 265
BTIZMAVED . .« o o o oot oot e e e e 265

BZIBNEBEANs]« o o o o e e e e e e 268
[37.13.1 Adding a checker via the Project Properties window| 268
B7.13.2 Adding a checker Via an ant targel - - -« « .« + oo e 269

BZIAShE 270
... 270
137.14.2 JDK 11 and later, for non-modularizedcode|. 270
Iﬂ.ﬂ.’iﬂu‘_mmjmanzgdm_d 271

.. 271

137. 16Type inference tools|. L 271

38 Frequently Asked Questions (FAQs)) 272
38.1 Motivation for pluggable type-checking| o 274
on’t make type errors, so would pluggable type-checking helpme? 274

ould I use pluggable types (type qualifiers), or should I used Java subtypes? 274

B83.1 Are fype annotations easy 0 read aid WHIET . . .« « o o o e 276
138.3.2 Will my code become cluttered with type annotations? 276

[38.3.3 Will using the Checker Framework slow down my program? Will it slow down the compiler?] 276

ow do [shorten the command line when invoking achecker?| 276
MWMparameter annotations, make no Sense for |

| publicmethods| 277
138.4 How to handle warnings and errors| L L 277
[38.4.1 What should I do if a checker 1ssues a warning about my code? 277

8.4.2 What does a certain Checker Framework warning message mean?| 277

B84.4 Can a pluggable typechecker guarantee that my code 1s correct]] . - » . .« . . o o o v o . . . 277

138.4.5 What guarantee does the Checker Framework give for concurrentcode? 278

38.4.6 How do I make compilation succeed even if a checker issues errors? 278

8.4.7 Why does the checker always say there are 100 errors or warnings?(. 278

[38.4.8 Why does the Checker Framework report an error regarding a type I have not written in my |

| PIOGram?| 279
[38.4.9 Why does the Checker Framework accept code on one line but reject it on the next). 279

138.4.10 How can I do run-time monitoring of properties that were not statically checked? 279

[38.5 False positive warnings| 279
[38.5.17 Whatis a “false positive” Warning?|o v v v i 279

5. ow can [improve the Checker Framework to eliminate a false positive warning?. 280

[38°3.3 Why doesn’t the Checker Framework infer types for fields and method return types? 280

138.5.4 Why doesn’t the Checker Framework track relationships between variables?. 281

[38.5.5 Why 1sn’t the Checker Framework path-sensitive?] 282

[38.:6 Syntax of type annotations] 283
BRI Whatis @ “TeCEIVEI ™ . . « « « o\ v e e et e e e e 283

38.6.2 What 1s the meaning of an annotation after a type, such as @NonNull Object @Nullable?| . 284

at 1s the meaning of array annotations such as @NonNull Object @Nullable []7] 284

138.6.4 What is the meaning of varargs annotations such as @English String @NonEmpty ...7 .. 284

38.6.5 What 1s the meaning of a type qualifier at a class declaratlon 284

12

|38 6. 8 How do I annotate a fully quahhed type name"| 285

2 285

38.6.10 What 1s the dlfference between type annotations and declaratlon annotations?| 286

. ow should type annotations be formatted in source code’ ere should I write type annotations?286

[B8.7 Semantics of type annotations] oo e e 288
[38.7.1 How can I handle typestate, or phases of my program with different data properties?| 288
[38.7.2 Why are explicit and implicit bounds defaulted differently?. 288
[38.7.3 How should I annotate code that uses generics? 289

[38.7.4 Why are type annotations declared with @Retention (RetentionPolicy.RUNTIME) Y 289
|§§§ Ezreatlng anewchecker| 289

B88IT HowdoTcreateanew cheCKerll o v oot i i ittt 289
[38.8.2 What properties can and cannot be handled by type-checking? 290
[38.8.3 Why is there no declarative syntax for writing typerules?. 290
38.9 Tool qUEStIOnS|. e e e e e e e 290

Eggl How does pluggable type-checking work? 290
Eggz WEat c!assﬁatﬁ 18 nee§e§ to use an annotate§ !1§rarz 7 291

y do .class files contain more annotations than the source code? 291

138.9.4 Is there a type-checker for managing checked and unchecked exceptions?| 291
[38.9.5 The Checker Framework runs too slowly| 291
38.9.6 What does the Checker Framework version number mean? 292
38.10Relationship to other tools| L 292
[38°10.1 Why not just use a bug detector (like SpotBugs or Error Prone)? v . v v v v v o .. 292
138.10.2 How does the Checker Framework compare with Eclipse’s null analysis? 293
[38.10.3 How does the Checker Framework compare with NullAway? 293
@Hmmm Optional type? 294

. 294
....................... 294
mmmmr—rrmmm 294
[38.10.8 What is the relationship between the Checker Framework and JSR 3087 294

[39 Troubleshooting, getting help, and contributing| 295
[39.1 Common problems and solutions| 295
[39.1.1 Unable to compile the Checker Framework| 295
[39.1.2 Unable to run the checker, or checker crashes| 295
39.1.3 Unexpected warnings not related to type-checking| 297

(014 Uncxpecied fype-checking reSully] . . - . - - -« o o o oo 297
[39.17.5 Unexpecied compilation output when running javac without a pluggable type-checked 299

139.2 How to report problems (bug reporting)] 300
2.1 Problems with ann librartes| 301

[39.3 Building from source] 301
0.3.1 Install prerequisites|. e e 301

30.32 Obtainthesourcel 302
[39.3.3 Build the Checker Frameworkl 302
139.3.4 Build the Checker Framework Manual (this document)| 303
[39.3.5 Code style, IDE configuration, pull requests, etc.| 303

0.3.6 Enable continuous integrationbuilds|.o oo 303
BO37 RETId IePOSIONIEN . . - - - -« + o o oo e 303
BOA Contribuling]. v ot e 303
[39.4.1 Contributing fixes (creating apullrequest)|. 303

[39.5 Credits and changelog|. 304
.. 304
[39.7 Publications| e 304

Chapter 1

Introduction

The Checker Framework enhances Java’s type system to make it more powerful and useful. This lets software developers
detect and prevent errors in their Java programs.

A “checker” is a compile-time tool that warns you about certain errors or gives you a guarantee that those errors do
not occur. The Checker Framework comes with checkers for specific types of errors:

0NN AW =

— =
W = O 0o

14.

15.

16.
17.

18.
19.
20.
21.
22.
23.

24.
25.

. Nullness Checker for null pointer errors (see Chapter 3] page

. Initialization Checker to ensure all ¢NonNull fields are set in the constructor (see Chapter[3.8] page 1))

. Map Key Checker to track which values are keys in a map (see Chapter 4] page[52)

. Optional Checker for errors in using the Optionalltype (see Chapter[5] page

. Interning Checker for errors in equality testing and interning (see Chapter[6} page[59)

. Called Methods Checker for the builder pattern (see Chapter [7] page[63)

. Resource Leak Checker for ensuring that resources are disposed of properly (see Chapter|[8] page

. Fake Enum Checker to allow type-safe fake enum patterns and type aliases or typedefs (see Chapter [} page
. Tainting Checker for trust and security errors (see Chapter[I0] page [8T))

. Lock Checker for concurrency and lock errors (see Chapter [T} page[84)

. Index Checker for array accesses (see Chapter[I2] page [96)

. Regex Checker to prevent use of syntactically invalid regular expressions (see Chapter|[I3] page[I06)

. Format String Checker to ensure that format strings have the right number and type of % directives (see Chapter[I4]

page[109)

Internationalization Format String Checker to ensure that i18n format strings have the right number and type of
{} directives (see Chapter[T3] page[I16)

Property File Checker to ensure that valid keys are used for property files and resource bundles (see Chapter [T6]
page[122)

Internationalization Checker to ensure that code is properly internationalized (see Chapter[16.2] page[123)
Signature String Checker to ensure that the string representation of a type is properly used, for example in
Class.forName (see Chapter[I7] page [I25)

GUI Effect Checker to ensure that non-GUI threads do not access the Ul, which would crash the application (see
Chapter (18] page[128)

Units Checker to ensure operations are performed on correct units of measurement (see Chapter [I9] page[133)
Signedness Checker to ensure unsigned and signed values are not mixed (see Chapter [20] page

Purity Checker to identify whether methods have side effects (see Chapter [21] page [T41)

Constant Value Checker to determine whether an expression’s value can be known at compile time (see Chapter[22]
page([[43)

Reflection Checker to determine whether an expression’s value (of type Method or Class) can be known at
compile time (see Chapter [24] page [I50)

Initialized Fields Checker to ensure all fields are set in the constructor (see Chapter [3.8] page A1)

Aliasing Checker to identify whether expressions have aliases (see Chapter 26} page[T58)

14

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html

26. Must Call Checker to over-approximate the methods that should be called on an object before it is de-allocated
(see Chapter [27] page [162))

27. Subtyping Checker for customized checking without writing any code (see Chapter 28] page

28. Third-party checkers that are distributed separately from the Checker Framework (see Chapter[29] page [T70)

These checkers are easy to use and are invoked as arguments to javac.
The Checker Framework also enables you to write new checkers of your own; see Chapters [28]and 35

1.1 How to read this manual

If you wish to get started using some particular type system from the list above, then the most effective way to read this
manual is:

e Read all of the introductory material (Chapters [TH2).

e Read just one of the descriptions of a particular type system and its checker (Chapters [3H29).

e Skim the advanced material that will enable you to make more effective use of a type system (Chapters [30H39),
so that you will know what is available and can find it later. Skip Chapter 35]on creating a new checker.

1.2 How it works: Pluggable types

Java’s built-in type-checker finds and prevents many errors — but it doesn’t find and prevent enough errors. The
Checker Framework lets you define new type systems and run them as a plug-in to the javac compiler. Your code stays
completely backward-compatible: your code compiles with any Java compiler, it runs on any JVM, and your coworkers
don’t have to use the enhanced type system if they don’t want to. You can check part of your program, or the whole
thing. Type inference tools exist to help you annotate your code; see Section [33]

Most programmers will use type systems created by other people, such as those listed at the start of the introduction
(Chapter [I] page[T4). Some people, called “type system designers”, create new type systems (Chapter 35| page [229).
The Checker Framework is useful both to programmers who wish to write error-free code, and to type system designers
who wish to evaluate and deploy their type systems.

This document uses the terms “checker” and “type-checking compiler plugin” as synonyms.

1.3 Installation

This section describes how to install the Checker Framework.

e If you use a build system that automatically downloads dependencies, such as Gradle or Maven, no installation
is necessary; just see Chapter[37] page[253]

e If you wish to try the Checker Framework without installing it, use the Checker Framework Live Demo webpage.

e This section describes how to install the Checker Framework from its distribution. The Checker Framework
release contains everything that you need, both to run checkers and to write your own checkers.

e Alternately, you can build the latest development version from source (Section[39.3] page [30T).

Requirement: You must have a JDK (version 8 or later) installed.
The installation process has two required steps and one optional step.

1. Download the Checker Framework distribution:
https://checkerframework.org/checker-framework-3.27.0.z1ip

2. Unzip it to create a checker-framework-3.27.0 directory.

3. Configure your IDE, build system, or command shell to include the Checker Framework on the classpath. Choose
the appropriate section of Chapter [37]

15

http://eisop.uwaterloo.ca/live/
https://checkerframework.org/checker-framework-3.27.0.zip

Now you are ready to start using the checkers.

We recommend that you work through the Checker Framework tutorial (https://checkerframework.org/
tutorial/)), which demonstrates the Nullness, Regex, and Tainting Checkers.

Section[I.4] walks you through a simple example. More detailed instructions for using a checker appear in Chapter 2}

The Checker Framework is released on a monthly schedule. The minor version (the middle number in the version
number) is incremented if there are any incompatibilities with the previous version, including in user-visible behavior
or in methods that a checker implementation might call.

1.4 Example use: detecting a null pointer bug

This section gives a very simple example of running the Checker Framework. There is also a tutorial (https:
//checkerframework.org/tutorial/) that you can work along with.

Let’s consider this very simple Java class. The local variable ref’s type is annotated as @NonNull, indicating that
ref must be a reference to a non-null object. Save the file as GetStarted. java.

import org.checkerframework.checker.nullness.qual.*;

public class GetStarted {
void sample() {
@NonNull Object ref = new Object();

If you run the Nullness Checker (Chapter 3)), the compilation completes without any errors.
Now, introduce an error. Modify ref’s assignment to:

@NonNull Object ref = null;
If you run the Nullness Checker again, it emits the following error:

GetStarted.java:5: incompatible types.
found : @Nullable <nulltype>
required: @NonNull Object

@NonNull Object ref = null;

A

1 error

This is a trivially simple example. Even an unsound bug-finding tool like SpotBugs or Error Prone could have
detected this bug. The Checker Framework’s analysis is more powerful than those tools and detects more code defects
than they do.

Type qualifiers such as @NonNull are permitted anywhere that you can write a type, including generics and casts;
see Section 2.1} Here are some examples:

@Interned String intern() { ... } // return value
int compareTo (@NonNull String other) { ... } // parameter
@NonNull List<@Interned String> messages; // non-null list of interned Strings

16

https://checkerframework.org/tutorial/
https://checkerframework.org/tutorial/
https://checkerframework.org/tutorial/
https://checkerframework.org/tutorial/
../api/org/checkerframework/checker/nullness/qual/NonNull.html

Chapter 2

Using a checker

A pluggable type-checker enables you to detect certain bugs in your code, or to prove that they are not present. The
verification happens at compile time.
Finding bugs, or verifying their absence, with a checker is a two-step process, whose steps are described in

Sections 2. 1land 2.2

1. The programmer writes annotations, such as|@NonNull/and @Interned, that specify additional information about
Java types. (Or, the programmer uses an inference tool to automatically infer annotations that are consistent with
their code: see Section[33]) It is possible to annotate only part of your code: see Section[2.4.6

2. The checker reports whether the program contains any erroneous code — that is, code that is inconsistent with
the annotations.

This chapter is structured as follows:

e Section[Z.J} How to write annotations

e Section How to run a checker

e Section What the checker guarantees
e Section[2.4} Tips about writing annotations

Additional topics that apply to all checkers are covered later in the manual:

e Chapter[3T} Advanced type system features
Chapter 32} Suppressing warnings
Chapter[34} Annotating libraries
Chapter[35} How to create a new checker
Chapter 37} Integration with external tools

There is a tutorial (https://checkerframework.org/tutorial/) that walks you through using the Checker
Framework on the command line.

2.1 Where to write type annotations

You may write a type annotation immediately before any use of a type, including in generics and casts. Because array
levels are types and receivers have types, you can also write type annotations on them. Here are a few examples of type
annotations:

@Interned String intern() { ... } // return value

int compareTo (@NonNull String other) { ... } // parameter

String toString(QTainted MyClass this) { ... } // receiver ("this" parameter)

@NonNull List<@Interned String> messages; // generics: non-null list of interned Strings
@Interned String @NonNull [] messages; // arrays: non-null array of interned Strings

myDate = (@Initialized Date) beingConstructed; // cast

17

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/interning/qual/Interned.html
https://checkerframework.org/tutorial/

You only need to write type annotations on method signatures, fields, and some type arguments. Most annotations
within method bodies are inferred for you; for more details, see Section [3_1_77}

The Java Language Specification also defines declaration annotations, such as @Deprecated and @Override, which
apply to a class, method, or field but do not apply to the method’s return type or the field’s type. They should be written
on their own line in the source code, before the method’s signature.

2.2 Running a checker

To run a checker, run the compiler javac as usual, but either pass the -processor plugin_class command-line
option, or use auto-discovery as described in Section 2.2.3] (If your project already uses auto-discovery for some
annotation processor, such as AutoValue, then you should use auto-discovery.) Two concretes example of using
-processor to run the Nullness Checker are

javac -processor nullness MyFile.java
javac -processor org.checkerframework.checker.nullness.NullnessChecker MyFile. java

where javac is as specified in Section [37.5]

You can also run a checker from within your favorite IDE or build system. See Chapter [37] for details about
build tools such as Ant (Section [37.3)), Buck (Section[37.4), Gradle (Section [37.8)), Maven (Section [37.12)), and sbt
(Section[37.14); IDEs such as Eclipse (Section[37.7)), Intelli] IDEA (Section [37.9), NetBeans (Section[37.13), and tIDE
(Section ; and about customizing other IDEs and build tools.

The checker is run on only the Java files that javac compiles. This includes all Java files specified on the command
line and those created by another annotation processor. It may also include other of your Java files, if they are more
recent than the corresponding .class file. Even when the checker does not analyze a class (say, the class was already
compiled, or source code is not available), it does check the uses of those classes in the source code being compiled.
Type-checking works modularly and intraprocedurally: when verifying a method, it examines only the signature
(including annotations) of other methods, not their implementations. When analyzing a variable use, it relies on the
type of the variable, not any dataflow outside the current method that produced the value.

After you compile your code while running a checker, the resulting .class and . jar files can be used for pluggable
type-checking of client code.

If you compile code without the -processor command-line option, no checking of the type annotations is
performed. Furthermore, only explicitly-written annotations are written to the .class file; defaulted annotations are
not, and this will interfere with type-checking of clients that use your code. Therefore, to create .class files that will
be distributed or compiled against, you should run the type-checkers for all the annotations that you have written.

2.2.1 Using annotated libraries

When your code uses a library that is not currently being compiled, the Checker Framework looks up the library’s
annotations in its class files or in a stub file.

Some projects are already distributed with type annotations by their maintainers, so you do not need to do anything
special. An example is all the libraries in|https://github.com/plume-1ib/l Over time, this should become more
common.

For some other libraries, the Checker Framework developers have provided an annotated version of the library,
either as a stub file or as compiled class files. (If some library is not available in either of these forms, you can contribute
by annotating it, which will help you and all other Checker Framework users; see Chapter [34] page[218])

Some stub files are used automatically by a checker, without any action on your part. For others, you must pass the
-Astubs=... command-line argument. As a special case, if an .astub file appears in checker/resources/, then
pass the command-line option use -Astubs=checker. jar/stubfilename.astub. The “checker. jar” should
be literal — don’t provide a path. This special syntax only works for “checker. jar”.

The annotated libraries that are provided as class files appear in the org.checkerframework.annotatedlib group
in the Maven Central Repository. The annotated library has identical behavior to the upstream, unannotated version;

18

https://github.com/plume-lib/
https://search.maven.org/search?q=org.checkerframework.annotatedlib
https://search.maven.org/search?q=org.checkerframework.annotatedlib

the source code is identical other than added annotations. (Some of the annotated libraries are bcel, commons-csv,
commons-io, guava, and java-getopt.)
To use an annotated library:

o If your project stores . jar files locally, then download the . jar file from the Maven Central Repositoryl
o If your project manages dependencies using a tool such as Gradle or Maven, then update your buildfile to use the
org.checkerframework.annotatedlib group. For example, in build.gradle, change

api group: ’'org.apache.bcel’, name: ’'bcel’, version: '6.3.1’
api group: ’'commons-io’, name: ’'commans-io’, version: 2.8’

to

api group: ’org.checkerframework.annotatedlib’, name: ’'bcel’, version: '6.3.1’
api group: ’org.checkerframework.annotatedlib’, name: ’commons-io’, version: ’2.8.0.1’

Usually use the same version number. (Sometimes you will use a slightly larger number, if the Checker Framework
developers have improved the type annotations since the last release by the upstream maintainers.) If a newer ver-
sion of the upstream library is available but that version is not available in org.checkerframework.annotatedlib,
then open an issue requesting that the org.checkerframework.annotatedlib version be updated.

There is one special case. If an .astub file is shipped with the Checker Framework in checker/resources/,
then you can use -Astubs=checker. jar/stubfilename.astub. The “checker.jar” should be literal — don’t
provide a path. (This special syntax only works for “checker. jar”.)

2.2.2 Summary of command-line options

You can pass command-line arguments to a checker via javac’s standard -A option (“A” stands for “annotation’).
All of the distributed checkers support the following command-line options. Each checker may support additional
command-line options; see the checker’s documentation.

To pass an option to only a particular checker, prefix the option with the canonical or simple name of a checker,
followed by an underscore “_”. Such an option will apply only to a checker with that name or any subclass of that
checker. For example, you can use

-ANullnessChecker_lint=redundantNullComparison
-Aorg.checkerframework.checker.guieffect.GuiEffectChecker_ lint=debugSpew

to pass different lint options to the Nullness and GUI Effect Checkers. A downside is that, in this example, the Nullness
Checker will issue a “The following options were not recognized by any processor” warning about the second option
and the GUI Effect Checker will issue a “The following options were not recognized by any processor” warning about
the first option.

Unsound checking: ignore some errors

e -AsuppressWarnings Suppress all errors and warnings matching the given key; see Section [32.3]

e -AskipUses, -RonlyUses Suppress all errors and warnings at all uses of a given class — or at all uses except
those of a given class. See Section[32.4]

e -AskipDefs, -AonlyDefs Suppress all errors and warnings within the definition of a given class — or everywhere
except within the definition of a given class. See Section[32.5]

e -RassumeSideEffectFree, -RassumeDeterministic, ~-AassumePure Unsoundly assume that every method
is side-effect-free, deterministic, or both; see Section [31.7.3]

e —-AassumeAssertionsAreEnabled, ~AassumeAssertionsAreDisabled Whether to assume that assertions are
enabled or disabled; see Section[31.7.6]

e -AignoreRangeOverflow Ignore the possibility of overflow for range annotations such as @IntRange; see
Section 2.4

e -Awarns Treat checker errors as warnings. If you use this, you may wish to also supply -Xmaxwarns 10000,
because by default javac prints at most 100 warnings. If you use this, don’t supply -Werror, which is a javac
argument to halt compilation if a warning is issued.

19

https://search.maven.org/search?q=org.checkerframework.annotatedlib

e -AignorelInvalidAnnotationLocations Ignore annotations in bytecode that have invalid annotation locations.
More sound (strict) checking: enable errors that are disabled by default

e -AcheckPurityAnnotations Check the bodies of methods marked @SideEffectFree, @Deterministic, and
@Pure to ensure the method satisfies the annotation. By default, the Checker Framework unsoundly trusts the
method annotation. See Section

e -AinvariantArrays Make array subtyping invariant; that is, two arrays are subtypes of one another only if
they have exactly the same element type. By default, the Checker Framework unsoundly permits covariant array
subtyping, just as Java does. See Section[31.1]

e -AcheckCastElementType In a cast, require that parameterized type arguments and array elements are the same.
By default, the Checker Framework unsoundly permits them to differ, just as Java does. See Section[30.1.6]and
Section BT}

e -AuseConservativeDefaultsForUncheckedCode Enables conservative defaults, and suppresses all type-
checking warnings, in unchecked code. Takes arguments “source,bytecode”. “-source,-bytecode” is the (unsound)
default setting.

- “bytecode” specifies whether the checker should apply conservative defaults to bytecode (that is, to already-
compiled libraries); see Section[31.5.6]

— Outside the scope of any relevant |@AnnotatedFor| annotation, “source” specifies whether conservative
default annotations are applied to source code and suppress all type-checking warnings; see Section [34.4]

e -AconcurrentSemantics Whether to assume concurrent semantics (field values may change at any time) or
sequential semantics; see Section 38.4.5]

e -AconservativeUninferredTypeArguments Whether an error should be issued if type arguments could not
be inferred and whether method type arguments that could not be inferred should use conservative defaults. By
default, such type arguments are (largely) ignored in later checks. Passing this option uses a conservative value
instead. See|Issue 979.

e -AignoreRawTypeArguments=false Do not ignore subtype tests for type arguments that were inferred for a
raw type. Must also use ~AconservativeUninferredTypeArguments. See Section[30.1.1]

e -processor org.checkerframework.common.initializedfields.InitializedFieldsChecker, ... En-
sure that all fields are initialized by the constructor. See Chapter [25] page

Type-checking modes: enable/disable functionality

e -Alint Enable or disable optional checks; see Section [32.6]

-AsuggestPureMethods Suggest methods that could be marked @SideEffectFree, @Deterministic, or

@Pure} see Section

e -AresolveReflection Determine the target of reflective calls, and perform more precise type-checking based
on that information; see Chapter[24] ~AresolveReflection=debug causes debugging information to be output.

e -Ainfer=outputformat Output suggested annotations for method signatures and fields. These annotations
may reduce the number of type-checking errors when running type-checking in the future; see Section[33.2] Using
-Ainfer=jaifs produces . jaif files. Using -Ainfer=stubs produces .astub files. Using ~Ainfer=ajava
produces .ajava files. You must also supply -Awarns, or the inference output may be incomplete.

e -AinferOutputOriginal When outputting .a’java files when running with -Ainfer=ajava, also output a
copy of the original file with no inferred annotations, but with the formatting of a . ajava file, to permit use of
diff to view the inferred annotations. Must be combined with ~Ainfer=ajava.

e -AshowSuppressWarningsStrings With each warning, show all possible strings to suppress that warning.

e -AwarnUnneededSuppressions Issue a warning if a @SuppressWarnings did not suppress a warning issued
by the checker. This only warns about @SuppressWarnings strings that contain a checker name (for syntax,
Section 32.1.T). The -ArequirePrefixInWarningSuppressions command-line argument ensures that all
@SuppressWarnings strings contain a checker name. An unneeded. suppression warning can be suppressed
only by @SuppressWarnings ("unneeded. suppression") or @SuppressWarnings ("checkername:unneeded. suppressio
not by @SuppressWarnings ("checkername").

20

../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/Deterministic.html
../api/org/checkerframework/dataflow/qual/Pure.html
../api/org/checkerframework/framework/qual/AnnotatedFor.html
https://github.com/typetools/checker-framework/issues/979
../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/Deterministic.html
../api/org/checkerframework/dataflow/qual/Pure.html

e -AwarnUnneededSuppressionsExceptions=regex disables -AwarnUnneededSuppressions for @SuppressiWarnings
strings that contain a match for the regular expression. Most users don’t need this.

e -ArequirePrefixInWarningSuppressions Require that the string in a warning suppression annotation begin
with a checker name. Otherwise, the suppress warning annotation does not suppress any warnings. For
example, if this command-line option is supplied, then @SuppressWarnings ("assignment™) has no effect, but
@SuppressWarnings ("nullness:assignment") does.

e —ApermitUnsupportedJdkVersion Issue a note, rather than a warning, when running the Checker Framework
on a JDK version that the Checker Framework maintainers do not support. The Checker Framework seems
to work on all versions of the JDK, from JDK 8 onward. However, in the past, Oracle has introduced JDK
incompatibilities that caused mysterious (to users) failures. If you have a problem while using this command-line
argument, please do not report it to the Checker Framework maintainers unless you can reproduce the problem
without this command-line argument.

Partially-annotated libraries

e -Astubs List of stub files or directories; see Section[34.5.1]
e -AstubWarnIfNotFound, -AstubNoWarnIfNotFound, -AstubWarnIfNotFoundIgnoresClasses, -AstubWarnIfRedundantWi
~AstubWarnNote Warn about problems with stub files; see Section[34.5.7]
e -AmergeStubsWithSource If both a stub file and a source file for a class are available, trust both and use the
greatest lower bound of their annotations. The default behavior (without this flag) is to ignore types from the stub
file if source is available. See Section[34.3.2]
e -AuseConservativeDefaultsForUncheckedCode=source Outside the scope of any relevant €AnnotatedFor
annotation, use conservative default annotations and suppress all type-checking warnings; see Section [34.4]

Debugging

e —AprintAllQualifiers, -AprintVerboseGenerics, -Anomsgtext, ~AdumpOnErrors Amount of detail in
messages; see Section [35.12.1]

e -Adetailedmsgtext Format of diagnostic messages; see Section[35.12.2]

e -Aignorejdkastub, -ApermitMissingJdk, -AparseAllJdk, ~AstubDebug Stub and JDK libraries; see Sec-
tion35.12.3

e -Afilenames, -Ashowchecks, -AshowInferenceSteps, -AshowlipiFailedInferences Progress tracing; see
Section[35.12.4]

e -AoutputArgsToFile Output the compiler command-line arguments to a file. Useful when the command line is
generated and executed by a tool, such as a build system. This produces a standalone command line that can be
executed independently of the tool that generated it (such as a build system). That command line makes it easier
to reproduce, report, and debug issues. For example, the command line can be modified to enable attaching a

debugger. See Section

e -Aflowdotdir, -Averbosecfy, ~Acfgviz Draw a visualization of the CFG (control flow graph); see Sec-
tion[35.12.6

e -AresourceStats, -AatfDoNotCache, -Aat fCacheSize Miscellaneous debugging options; see Section[35.12.7]

e -Aversion Print the Checker Framework version.

e -AprintGitProperties Print information about the git repository from which the Checker Framework was
compiled.

Some checkers support additional options, which are described in that checker’s manual section. For example, -Aquals
tells the Subtyping Checker (see Chapter [28)) and the Fenum Checker (see Chapter [09)) which annotations to check.

Here are some standard javac command-line options that you may find useful. Many of them contain “processor” or
“proc”, because in javac jargon, a checker is an “annotation processor”.

e —processor Names the checker to be run; see Sections[2.2]and[2.2.4] May be a comma-separated list of multiple
checkers. Note that javac stops processing an indeterminate time after detecting an error. When providing
multiple checkers, if one checker detects any error, subsequent checkers may not run.

21

../api/org/checkerframework/framework/qual/AnnotatedFor.html

e -processorpath Indicates where to search for the checker. This should also contain any classes used by
type-checkers, such as qualifiers used by the Subtyping Checker (see Section [28.2) and classes that define
statically-executable methods used by the Constant Value Checker (see Section[22.2.2)).

e -proc:{none,only} Controls whether checking happens; -proc:none means to skip checking; -proc:only
means to do only checking, without any subsequent compilation; see Section[2.2.3]

e -implicit:class Suppresses warnings about implicitly compiled files (not named on the command line); see
Section 373

e —J Supply an argument to the JVM that is running javac; for example, -J-Xmx2500m to increase its maximum
heap size

e —doe To “dump on error”, that is, output a stack trace whenever a compiler warning/error is produced. Useful
when debugging the compiler or a checker.

2.2.3 Checker auto-discovery

“Auto-discovery” makes the javac compiler always run an annotation processor, such as a checker plugin, without
explicitly passing the -processor command-line option. This can make your command line shorter, and it ensures that
your code is checked even if you forget the command-line option.
If the javac command line specifies any -processor command-line option, then auto-discovery is disabled. This
means that if your project currently uses auto-discovery, you should use auto-discovery for the Checker Framework
too. (Alternately, if you prefer to use a -processor command-line argument, you will need to specify all annotation
processors, including ones that used to be auto-discovered.)
To enable auto-discovery, place a configuration file named META-INF/services/javax.annotation.processing.Processor
in your classpath. The file contains the names of the checkers to be used, listed one per line. For instance, to run the
Nullness Checker and the Interning Checker automatically, the configuration file should contain:

org.checkerframework.checker.nullness.NullnessChecker
org.checkerframework.checker.interning.InterningChecker

You can disable this auto-discovery mechanism by passing the ~proc:none command-line option to javac, which
disables all annotation processing including all pluggable type-checking.

2.2.4 Shorthand for built-in checkers

Ordinarily, javac’s -processor flag requires fully-qualified class names. When using the Checker Framework javac
wrapper (Section[37.5)), you may omit the package name and the Checker suffix. The following three commands are
equivalent:

javac -processor org.checkerframework.checker.nullness.NullnessChecker MyFile.java
javac -processor NullnessChecker MyFile. java
javac —processor nullness MyFile.java

This feature also works when multiple checkers are specified. Their names are separated by commas, with no
surrounding space. For example:

javac -processor NullnessChecker,RegexChecker MyFile.java
javac -processor nullness,regex MyFile.java

This feature does not apply to javac @argfiles,

2.3 What the checker guarantees

A checker guarantees two things: type annotations reflect facts about run-time values, and illegal operations are not
performed.

22

https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javac.html#commandlineargfile

For example, the Nullness Checker (Chapter[3) guarantees lack of null pointer exceptions (Java Nul1lPointerException).
More precisely, it guarantees that expressions whose type is annotated with |@NonNull never evaluate to null, and it
forbids other expressions from being dereferenced.

As another example, the Interning Checker (Chapter|[6) guarantees that correct equality tests are performed. More
precisely, it guarantees that every expression whose type is an @ Interned type evaluates to an interned value, and it
forbids == on other expressions.

The guarantee holds only if you run the checker on every part of your program and the checker issues no warnings
anywhere in the code. You can also verify just part of your program.

There are some limitations to the guarantee.

e A compiler plugin can check only those parts of your program that you run it on. If you compile some parts of
your program without running the checker, then there is no guarantee that the entire program satisfies the property
being checked. Some examples of un-checked code are:

— Code compiled without the -processor switch. This includes external libraries supplied as a . class file
and native methods (because the implementation is not Java code, it cannot be checked).

— Code compiled with the ~AskipUses, -AonlyUses, -AskipDefs or ~AonlyDefs command-line arguments
(see Chapter [32).

— Dynamically generated code, such as generated by Spring or MyBatis. Its bytecode is directly generated
and run, not compiled by javac and not visible to the Checker Framework.

In each of these cases, any use of the code is checked — for example, a call to a native method must be compatible
with any annotations on the native method’s signature. However, the annotations on the un-checked code are
trusted; there is no verification that the implementation of the native method satisfies the annotations.

e You can suppress warnings, such as via the @SuppressWarnings annotation (Chapter 32} page [203). If you do
so incorrectly, the checker’s guarantee no longer holds.

e The Checker Framework is, by default, unsound in a few places where a conservative analysis would issue too
many false positive warnings. These are listed in Section[2.2.2] You can supply a command-line argument to
make the Checker Framework sound for each of these cases.

e Specific checkers may have other limitations; see their documentation for details.

In order to avoid a flood of unhelpful warnings, many of the checkers avoid issuing the same warning multiple
times. For example, consider this code:

@Nullable Object x = ...;
x.toString(); // warning
x.toString(); // no warning

The second call to toString cannot possibly throw a null pointer warning — x is non-null if control flows to the second
statement. In other cases, a checker avoids issuing later warnings with the same cause even when later code in a method
might also fail. This does not affect the soundness guarantee, but a user may need to examine more warnings after
fixing the first ones identified. (Often, a single fix corrects all the warnings.)

If you find that a checker fails to issue a warning that it should, then please report a bug (see Section [39.2).

2.4 Tips about writing annotations

Section [34.1] gives additional tips that are specific to annotating a third-party library.

2.4.1 Write annotations before you run a checker

Before you run a checker, annotate the code, based on its documentation. Then, run the checker to uncover bugs in the
code or the documentation.

Don’t do the opposite, which is to run the checker and then add annotations according to the warnings issued. This
approach is less systematic, so you may overlook some annotations. It often leads to confusion and poor results. It leads

23

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/interning/qual/Interned.html

users to make changes not for any principled reason, but to “make the type-checker happy”, even when the changes are
in conflict with the documentation or the code. Also see “Annotations are a specification”, below.

2.4.2 How to get started annotating legacy code

Annotating an entire existing program may seem like a daunting task. But, if you approach it systematically and do a
little bit at a time, you will find that it is manageable.

Start small

Start small. Focus on one specific property that matters to you; in other words, run just one checker rather than multiple
ones. You may choose a different checker for different programs. Focus on the most mission-critical or error-prone part
of your code; don’t try to annotate your whole program at first.

It is easiest to add annotations if you know the code or the code contains documentation. While adding annotations,
you will spend most of your time understanding the code, and less time actually writing annotations or running the
checker.

Don’t annotate the whole program, but work module by module. Start annotating classes at the leaves of the call
tree — that is, start with classes/packages that have few dependencies on other code. Annotate supertypes before you
annotate classes that extend or implement them. The reason for this rule is that it is easiest to annotate a class if the code
it depends on has already been annotated. Sections [32.4]and [32.5] give ways to skip checking of some files, directories,
or packages. Section [2.4.6|gives advice about handling calls from annotated code into unannotated code.

When annotating, be systematic; we recommend annotating an entire class or module at a time (not just some of the
methods) so that you don’t lose track of your work or redo work. For example, working class-by-class avoids confusion
about whether an unannotated type use means you determined that the default is desirable, or it means you didn’t yet
examine that type use.

Don’t overuse pluggable type-checking. If the regular Java type system can verify a property using Java subclasses,
then that is a better choice than pluggable type-checking (see Section [38.1.2).

Annotations are a specification

When you write annotations, you are writing a specification, and you should think about them that way. Start out by
understanding the program so that you can write an accurate specification. Sections [2.4.3]and [2.4.4] give more tips about
writing specifications.

For each class, read its Javadoc. For instance, if you are adding annotations for the Nullness Checker (Section [3)),
then you can search the documentation for “null” and then add @Nullable anywhere appropriate. Start by annotating
signatures and fields, but not method bodies. The only reason to even read the method bodies yet is to determine
signature annotations for undocumented methods — for example, if the method returns null, you know its return type
should be annotated @Nullable, and a parameter that is compared against null may need to be annotated @Nullable.

The specification should state all facts that are relevant to callees. When checking a method, the checker uses
only the specification, not the implementation, of other methods. (Equivalently, type-checking is “modular” or
“intraprocedural”.) When analyzing a variable use, the checker relies on the type of the variable, not any dataflow
outside the current method that produced the value.

After you have annotated all the signatures, run the checker. Then, fix bugs in code and add/modify annotations
as necessary. Don’t get discouraged if you see many type-checker warnings at first. Often, adding just a few missing
annotations will eliminate many warnings, and you’ll be surprised how fast the process goes overall (assuming that you
understand the code, of course).

It is usually not a good idea to experiment with adding and removing annotations in order to understand their
effect. It is better to reason about the desired design. However, to avoid having to manually examine all callees, a more
automated approach is to save the checker output before changing an annotation, then compare it to the checker output
after changing the annotation.

Chapter [34]tells you how to annotate libraries that your code uses. Section[2.4.5]and Chapter [32]tell you what to do
when you are unable to eliminate checker warnings by adding annotations.

24

Write good code

Avoid complex code, which is more error-prone. If you write your code to be simple and clear enough for the type-
checker to verify, then it will also be easier for programmers to understand. When you verify your code, a side benefit
is improving your code’s structure.

Your code should compile cleanly under the regular Java compiler. As a specific example, your code should not
use raw types like List; use parameterized types like List<String> instead (Section[30.1.1)). If you suppress Java
compiler warnings, then the Checker Framework will issue more warnings, and its messages will be more confusing.
(Also, if you are not willing to write code that type-checks in Java, then you might not be willing to use an even more
powerful type system.)

Do not write unnecessary annotations.

e Do not annotate local variables unless necessary. The checker infers annotations for local variables (see
Section [31.7). Usually, you only need to annotate fields and method signatures. You should add annotations
inside method bodies only if the checker is unable to infer the correct annotation (usually on type arguments or
array element types, rather than on top-level types).

e Do not write annotations that are redundant with defaults. For example, when checking nullness (Chapter 3]
page [30), the default annotation is @NonNull, in most locations other than some type bounds (Section [31.5.3).
When you are starting out, it might seem helpful to write redundant annotations as a reminder, but that’s like
when beginning programmers write a comment about every simple piece of code:

// The below code increments variable i by adding 1 to it.

i++;

As you become comfortable with pluggable type-checking, you will find redundant annotations to be distracting
clutter, so avoid putting them in your code in the first place.

e Avoid writing @SuppressWarnings annotations unless there is no alternative. It is tempting to think that your
code is right and the checker’s warnings are false positives. Sometimes they are, but slow down and convince
yourself of that before you dismiss them. Section [2.4.5]discusses what to do when a checker issues a warning
about your code.

2.4.3 Annotations indicate non-exceptional behavior

You should use annotations to specify normal behavior. The annotations indicate all the values that you want to flow to
a reference — not every value that might possibly flow there if your program has a bug.

Methods that crash when passed certain values

Nullness example As an example, consider the Nullness Checker. Its goal is to guarantee that your program does not
crash due to a null value.
This method crashes if null is passed to it:

/** @throws NullPointerException if arg is null */
void ml (Object arg) {
arg.toString();

}

Therefore, the type of arg should be @NonNull Object — you can write this as just Object, because @NonNull is the
default. The Nullness Checker (Chapter 3] page[30) prevents null pointer exceptions by warning you whenever a client
passes a value that might cause m1 to crash.

Here is another method:

/** Qthrows NullPointerException if arg is null */
void m2 (Object arg) {

25

Objects.requireNonNull (arg);

Method m2 behaves just like m1 in that it throws Nul1lPointerException if a client passes null. Therefore, their
specifications should be identical (the formal parameter type is annotated with @NonNul1l), so the checker will issue the
same warning if a client might pass null.

The same argument applies to any method that is guaranteed to throw an exception if it receives null as an argument.
Examples include:

com.google.common.base.Preconditions.checkNotNull (Object)
java.lang.Double.valueOf (String)
java.lang.Objects.requireNonNull (Object)
java.lang.String.contains (CharSequence)
org.junit.Assert.assertNotNull (Object)

Their formal parameter type is annotated as @NonNull, because otherwise the program might crash. Adding a call
to a method like requireNonNull never prevents a crash: your code still crashes, but with a slightly different stack
trace. In order to prevent all exceptions in your program caused by null pointers, you need to prevent those thrown by
methods including requireNonNull.

(One might argue that the formal parameter should be annotated as @Nullable because passing null has a well-
defined semantics (throw an exception) and such an execution may be possible if your program has a bug. However, it
is never the programmer’s intent for null to flow there. Preventing such bugs is the purpose of the Nullness Checker.)

A method like requireNonNull is useless for making your code correct, but it does have a benefit: its stack trace
may help developers to track down the bug. (For users, the stack trace is scary, confusing, and usually non-actionable.)
But if you are using the Checker Framework, you can prevent errors rather than needing extra help in debugging the
ones that occur at run time.

Optional example Another example is the Optional Checker (Chapter 5] page and the orElseThrow/ method.
The goal of the Optional Checker is to ensure that the program does not crash due to use of a non-present Optional
value. Therefore, the receiver of orElseThrow is annotated as @Present, and the Optional Checker issues a warning if
the client calls orElseThrow on a @MaybePresent value.

Permitting crashes in some called methods You can make a checker ignore crashes in library code, such as
assertNotNull (), that occur as a result of misuse by your code. This invalidates the checker’s guarantee that your
program will not crash. (Programmers and users typically care about all crashes, no matter which method is at the top
of the call stack when the exception is thrown.) The checker will still warn you about crashes in your own code.

e The -AskipUses command-line argument (Section [32.4) skips checking all method calls to one or more classes.

e A stub file (Section@ can override the library’s annotations, for one or more methods.

e Don’t type-check clients of the method. For example, JUnit’s assertNotNull () is typically called only in test
code; its clients are the tests. If you type-check only your main program, then the annotation on assertNotNull ()
is irrelevant.

Methods that sometimes crash when passed certain values

If a method can possibly throw an exception because its parameter is null, then that parameter’s type should be
@NonNull, which guarantees that the type-checker will issue a warning for every client use that has the potential to
cause an exception. Don’t write @Nullable on the parameter just because there exist some executions that don’t
necessarily throw an exception.

26

../api/org/checkerframework/checker/nullness/qual/Nullable.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html#orElseThrow()
../api/org/checkerframework/checker/optional/qual/Present.html
../api/org/checkerframework/checker/optional/qual/MaybePresent.html

2.4.4 Subclasses must respect superclass annotations

An annotation indicates a guarantee that a client can depend upon. A subclass is not permitted to weaken the contract;
for example, if a method accepts null as an argument, then every overriding definition must also accept null. A
subclass is permitted to strengthen the contract; for example, if a method does not accept null as an argument, then an
overriding definition is permitted to accept null.

As a bad example, consider an erroneous @Nullable annotation in
com/google/common/collect/Multiset. java:

101 public interface Multiset<E> extends Collection<E> {

122 /**

123 * Adds a number of occurrences of an element to this multiset.

129 * (@param element the element to add occurrences of; may be {@code null} only
130 * if explicitly allowed by the implementation

137 * @throws NullPointerException if {@code element} is null and this

138 * implementation does not permit null elements. Note that if {@code

139 * occurrences} is zero, the implementation may opt to return normally.
140 */

141 int add(@Nullable E element, int occurrences);

There exist implementations of Multiset that permit null elements, and implementations of Multiset that do not
permit null elements. A client with a variable Multiset ms does not know which variety of Multiset ms refers to.
However, the @Nullable annotation promises that ms.add (null, 1) is permissible. (Recall from Section [2.4.3]that
annotations should indicate normal behavior.)

If parameter element on line 141 were to be annotated, the correct annotation would be @NonNull. Suppose a
client has a reference to same Multiset ms. The only way the client can be sure not to throw an exception is to pass only
non-null elements to ms.add (). A particular class that implements Multiset could declare add to take a @Nullable
parameter. That still satisfies the original contract. It strengthens the contract by promising even more: a client with
such a reference can pass any non-null value to add (), and may also pass null.

However, the best annotation for line 141 is no annotation at all. The reason is that each implementation of the
Multiset interface should specify its own nullness properties when it specifies the type parameter for Multiset. For
example, two clients could be written as

class MyNullPermittingMultiset implements Multiset<@Nullable Object> {
class MyNullProhibitingMultiset implements Multiset<@NonNull Object> { ... }

—

or, more generally, as

class MyNullPermittingMultiset<E extends @Nullable Object> implements Multiset<E> { ... }
class MyNullProhibitingMultiset<E extends @NonNull Object> implements Multiset<E> { ... }

Then, the specification is more informative, and the Checker Framework is able to do more precise checking, than if
line 141 has an annotation.

It is a pleasant feature of the Checker Framework that in many cases, no annotations at all are needed on type
parameters such as E in MultiSet.

2.4.5 What to do if a checker issues a warning about your code

When you run a type-checker on your code, it is likely to issue warnings or errors. Don’t panic! If you have trouble
understanding a Checker Framework warning message, you can search for its text in this manual. There are three
general causes for the warnings:

27

https://github.com/google/guava/blob/master/guava/src/com/google/common/collect/Multiset.java#L129

You found a bug There is a bug in your code, such as a possible null dereference. Fix your code to prevent that crash.

Wrong annotations The annotations are too strong (they are incorrect) or too weak (they are imprecise). Improve
the annotations, usually by writing more annotations in order to better express the specification. Only write
annotations that accurately describe the intended behavior of the software — don’t write inaccurate annotations
just for the purpose of eliminating type-checker warnings.
Usually you need to improve the annotations in your source code. Sometimes you need to improve annotations in
a library that your program uses (see Chapter [34] page[2T8).

Type-checker weakness There is a weakness in the type-checker. Your code is safe — it never suffers the error at run
time — but the checker cannot prove this fact. (Recall that The checker works modularly: when type-checking
a method m, it relies on the types and signatures of variables and methods used by m, but not the initialization
expressions or the method bodies.)
If possible, rewrite your code to be simpler for the checker to analyze; this is likely to make it easier for people to
understand, too. If that is not possible, suppress the warning (see Chapter[32} page[203); be sure to include a code
comment explaining how you know the code is correct even though the type-checker cannot deduce that fact.
Do not add an if test that can never fail, just to suppress a warning. Adding a gratuitous if clutters the code
and confuses readers. A reader should assume that every if condition can evaluate to true or false. There is one
exception to this rule: an if test may have a condition that you think will never evaluate to true, if its body just
throws a descriptive error message.

For each warning issued by the checker, you need to determine which of the above categories it falls into. Here is an
effective methodology to do so. It relies mostly on manual code examination, but you may also find it useful to write
test cases for your code or do other kinds of analysis, to verify your reasoning. (Also see Section[39.1.4]and Chapter [39]
Troubleshooting. In particular, Section [39.1.4]explains this same methodology in different words.)

Step 1: Explain correctness: write a proof Write an explanation of why your code is correct and it never suffers
the error at run time. In other words, this is an informal proof that the type-checker’s warning is incorrect. Write it in
natural language, such as English.

Don’t skip any steps in your proof. (For example, don’t write an unsubstantiated claim such as “x is non-null here”;
instead, give a justification.) Don’t let your reasoning rely on facts that you do not write down explicitly. For example,
remember that calling a method might change the values of object fields; your proof might need to state that certain
methods have no side effects.

If you cannot write a proof, then there is a bug in your code (you should fix the bug) or your code is too complex for
you to understand (you should improve its documentation and/or design).

Step 2: Translate the proof into annotations. Here are some examples of the translation.

e If your proof includes “variable x is never null at run time”, then annotate x’s type with @NonNull.

e If your proof includes “method foo always returns a legal regular expression”, then annotate foo’s return type
with |@Regex.

o If your proof includes “if method join’s first argument is non-null, then join returns a non-null result”, then
annotate join’s first parameter and return type with|@PolyNull|

e If your proof includes “method processOptions has already been called and it set field tz1”, then annotate
processOptions’s declaration with @EnsuresNonNull|("tz1").

e If your proof includes “method isEmpty returned false, so its argument must have been non-null”, then annotate
isEmpty’s declaration with @EnsuresNonNullIf|(expression="4#1",result=false).

o If your proof includes “method m has no side effects”, then annotate m’s declaration with @SideEffectFree,

e If your proof includes “each call to method m returns the same value”, then annotate m’s declaration with
@Deterministicl

All of these are examples of correcting weaknesses in the annotations you wrote. The Checker Framework provides
many other powerful annotations; you may be surprised how many proofs you can express in annotations. If you need
to annotate a method that is defined in a library that your code uses, see Chapter [34] page 218§]

28

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/regex/qual/Regex.html
../api/org/checkerframework/checker/nullness/qual/PolyNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/Deterministic.html

Don’t omit any parts of your proof. When the Checker Framework analyzes a method, it examines only the
signature/specification (not the implementation) of other methods.

If there are complex facts in your proof that cannot be expressed as annotations, then that is a weakness in the
type-checker. For example, the Nullness Checker cannot express “in list 1st, elements stored at even indices are always
non-null, but elements stored at odd elements might be null.” In this case, you have two choices. First, you can
suppress the warning (Chapter [32] page [203); be sure to write a comment explaining your reasoning for suppressing the
warning. You may wish to submit a feature request (Section [39.2) asking for annotations that handle your use case.
Second, you can rewrite the code to make the proof simpler; in the above example, it might be better to use a list of
pairs rather than a heterogeneous list.

Step 3: Re-run the checker At this point, all the steps in your proof have been formalized as annotations. Re-run
the checker and repeat the process for any new or remaining warnings.

If every step of your proof can be expressed in annotations, but the checker cannot make one of the deductions (it
cannot follow one of the steps), then that is a weakness in the type-checker. First, double-check your reasoning. Then,
suppress the warning, along with a comment explaining your reasoning (Chapter 32} page[203). The comment is an
excerpt from your informal proof, and the proof guides you to the best place to suppress the warning. Please submit a
bug report so that the checker can be improved in the future (Section [39.2)).

2.4.6 Calls to unannotated code (legacy libraries)

Sometimes, you wish to type-check only part of your program. You might focus on the most mission-critical or
error-prone part of your code. When you start to use a checker, you may not wish to annotate your entire program right
away. You may not have enough knowledge to annotate poorly-documented libraries that your program uses. Or, the
code you are annotating may call into unannotated libraries.

If annotated code uses unannotated code, then the checker may issue warnings. For example, the Nullness Checker
(Chapter 3) will warn whenever an unannotated method result is used in a non-null context:

@NonNull myvar = unannotated_method(); // WARNING: unannotated_method may return null

If the call can return null, you should fix the bug in your program by removing the |@NonNull|annotation in your
own program.
If the call never returns null, you have two choices: annotate the library or suppress warnings.

1. To annotate the library:

o If the unannotated code is in your program, you can write annotations but not type-check them yet. Two
ways to prevent the type-checking are via a @SuppressWarnings annotation (Section [32.1)) or by not
running the checker on that file, for example via the ~AskipDefs command-line option (Section [32.5).

e To annotate a library whose source code you do not have or cannot change, see Chapter [34]

2. To suppress all warnings related to uses of unannotated_method, use the -~AskipUses command-line option
(Section [32.4). Beware: a carelessly-written regular expression may suppress more warnings than you intend.

29

../api/org/checkerframework/checker/nullness/qual/NonNull.html

Chapter 3

Nullness Checker

If the Nullness Checker issues no warnings for a given program, then running that program will never throw a null
pointer exception. In other words, the Nullness Checker prevents all Nul1PointerExceptions. See Section [3.1]for
more details about the guarantee and what is checked.

The most important annotations supported by the Nullness Checker are @NonNull and|@Nullable, |@NonNull|is
rarely written, because it is the default. All of the annotations are explained in Section [3.2]

To run the Nullness Checker, supply the -processor org.checkerframework.checker.nullness.NullnessChecker
command-line option to javac. For examples, see Section[3.5]

The NullnessChecker is actually an ensemble of three pluggable type-checkers that work together: the Nullness
Checker proper (which is the main focus of this chapter), the Initialization Checker (Section [3.8)), and the Map Key
Checker (Chapter[d] page[52). Their type hierarchies are completely independent, but they work together to provide
precise nullness checking.

3.1 What the Nullness Checker checks

The checker issues a warning in these cases:

1. When an expression of non-@NonNull|type is dereferenced, because it might cause a null pointer exception.
Dereferences occur not only when a field is accessed, but when an array is indexed, an exception is thrown, a lock
is taken in a synchronized block, and more. For a complete description of all checks performed by the Nullness
Checker, see the Javadoc for NullnessVisitor.

2. When an expression of @NonNull|type might become null, because it is a misuse of the type: the null value could
flow to a dereference that the checker does not warn about.

As a special case of an of |@NonNull|type becoming null, the checker also warns whenever a field of @NonNull
type is not initialized in a constructor.

This example illustrates the programming errors that the checker detects:

@Nullable Object obj; // might be null
@NonNull Object nnobj; // never null

obj.toString() // checker warning: dereference might cause null pointer exception

nnobj = obj; // checker warning: nnobj may become null
if (nnobj == null) // checker warning: redundant test

Parameter passing and return values are checked analogously to assignments.
The Nullness Checker also checks the correctness, and correct use, of initialization (see Section [3.8) and of map key
annotations (see Chapter [page[52).

30

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/NullnessVisitor.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html

The checker performs additional checks if certain ~Alint command-line options are provided. (See Section[32.6]
for more details about the -A1int command-line option.)
Section [2.3|notes some limitations to guarantees made by the Checker Framework.

3.1.1 Nullness Checker optional warnings

1. Options that control soundness:

e If you supply the -Alint=soundArrayCreationNullness command-line option, then the checker warns
if it encounters an array creation with a non-null component type. See Section [3.3.4]for a discussion.

e If you supply the -Astubs=collection-object-parameters-may-be-null.astub command-line op-
tion, then in JDK collection classes, the checker unsoundly permits null as an argument for any key or value
formal parameter whose type is Object (instead of the element type). See Section[3.4.2]

e If you supply the -Alint=trustArrayLenZero command-line option, then the checker will trust @ArrayLen|(
0) annotations. See Section [3.3.3]for a discussion.

o If you supply the -AassumeKeyFor command-line option, then the checker will unsoundly assume that the
argument to Map.get is a key for the receiver map. It will not do any checking of |@KeyFor|and related
qualifiers.

2. Options that warn about poor code style:

e If you supply the -Alint=redundantNullComparison command-line option, then the checker warns
when a null check is performed against a value that is guaranteed to be non-null, as in ("m" == null).
Such a check is unnecessary and might indicate a programmer error or misunderstanding. The lint option is
disabled by default because sometimes such checks are part of ordinary defensive programming.

3. Options that enable checking modes:

o If you supply the -Alint=permitClearProperty command-line option, then the checker permits calls

to System.setProperties ()|and calls to System.clearProperty|that might clear one of the built-in
properties.
By default, the checker forbids calls to those methods, and also special-cases type-checking of calls to
System.getProperty () and|System.setProperties (). A call to one of these methods can return null
in general, but by default the Nullness Checker treats it as returning non-null if the argument is one of the
literal strings listed in the documentation of System.getProperties (). To make this behavior sound, the
Nullness Checker forbids calls that might clear any built-in property, as described above.

3.2 Nullness annotations

The Nullness Checker uses three separate type hierarchies: one for nullness, one for initialization (Section[3.8), and one
for map keys (Chapter 4] page[52) The Nullness Checker has four varieties of annotations: nullness type qualifiers,
nullness method annotations, initialization type qualifiers, and map key type qualifiers.

3.2.1 Nullness qualifiers

The nullness hierarchy contains these qualifiers:

@Nullable| indicates a type that includes the null value. For example, the Java type Boolean is nullable: a variable of
type Boolean always has one of the values TRUE, FALSE, or null. (Since @NonNull is the default type annotation,
you would actually write this type as @Nullable Boolean.)

@NonNull indicates a type that does not include the null value. The type boolean is non-null; a variable of type
boolean always has one of the values true or false. The type @NonNull Boolean is also non-null: a variable
of type @NonNull Boolean always has one of the values TRUE or FALSE — never null. Dereferencing an
expression of non-null type can never cause a null pointer exception.

The @NonNull annotation is rarely written in a program, because it is the default (see Section [3.3.2).

31

../api/org/checkerframework/common/value/qual/ArrayLen.html
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/System.html#getProperties()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/System.html#clearProperty(java.lang.String)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/System.html#getProperty(java.lang.String,java.lang.String)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/System.html#setProperties(java.util.Properties)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/System.html#getProperties()
../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html

@Nullable Object

/\

@NonNull Object @Nullable Date

— —r

@NonNull Date

Figure 3.1: Partial type hierarchy for the Nullness type system. Java’s Object is expressed as @Nullable Object.
Programmers can omit most type qualifiers, because the default annotation (Section [3.3.2) is usually correct. The
Nullness Checker verifies three type hierarchies: this one for nullness, one for initialization (Section[3.8)), and one for

map keys (Chapter[d] page[52).

@PolyNull| indicates qualifier polymorphism. For a description of qualifier polymorphism, see Section[30.2]
@MonotonicNonNull indicates a reference that may be null, but if it ever becomes non-null, then it never
becomes null again. This is appropriate for lazily-initialized fields, for field initialization that occurs in a
lifecycle method other than the constructor (e.g., an override of android.app.Activity.onCreate), and other
uses. @MonotonicNonNull is typically written on field types, but not elsewhere.
The benefit of @MonotonicNonNull over @Nullable is that after a check of a @MonotonicNonNull field, all
subsequent accesses within that method can be assumed to be @NonNull, even after arbitrary external method
calls that have access to the given field. By contrast, for a @Nullable field, the Nullness Checker assumes that
most method calls might set it to null. (Exceptions are calls to methods that are €SideEffectFree or that have
an|@EnsuresNonNull or @EnsuresNonNullIf annotation.)
A @MonotonicNonNull field may be initialized to null, but the field may not be assigned to null anywhere else in
the program. If you supply the noInitForMonotonicNonNull lint flag (for example, supply ~Alint=noInitForMonotonicNonNu.
on the command line), then @MonotonicNonNull fields are not allowed to have initializers at their declarations.
Use of @MonotonicNonNull on a static field is a code smell: it may indicate poor design. You should consider
whether it is possible to make the field a member field that is set in the constructor.
In the type system, @MonotonicNonNull is a supertype of @NonNull and a subtype of @Nullable.

Figure [3.1] shows part of the type hierarchy for the Nullness type system. (The annotations exist only at compile
time; at run time, Java has no multiple inheritance.)

3.2.2 Nullness method annotations

The Nullness Checker supports several annotations that specify method behavior. These are declaration annotations, not
type annotations: they apply to the method itself rather than to some particular type.

Q@RequiresNonNull| indicates a method precondition: The annotated method expects the specified variables to be
non-null when the method is invoked. Don’t use this for formal parameters (just annotate their type as @NonNull).
@RequiresNonNull is appropriate for a field that is @Nullable in general, but some method requires the field to
be non-null.

@EnsuresNonNull

@EnsuresNonNullIf indicates a method postcondition. With @EnsuresNonNull, the given expressions are
non-null after the method returns; this is useful for a method that initializes a field, for example. With
@EnsuresNonNullIf, if the annotated method returns the given boolean value (true or false), then the given
expressions are non-null. See Section and the Javadoc for examples of their use.

32

../api/org/checkerframework/checker/nullness/qual/PolyNull.html
../api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
../api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html

3.2.3 Initialization qualifiers

The Nullness Checker invokes an Initialization Checker, whose annotations indicate whether an object is fully initialized
— that is, whether all of its fields have been assigned.

@Initialized
@UnknownInitialization
@UnderInitialization

Use of these annotations can help you to type-check more code. Figure[3.3]shows its type hierarchy. For details, see
Section[3.8]

3.2.4 Map key qualifiers

dKeyFor

indicates that a value is a key for a given map — that is, indicates whether map.containsKey (value) would evaluate
to true.

This annotation is checked by a Map Key Checker (Chapter [d] page[52)) that the Nullness Checker invokes. The
@KeyFor|annotation enables the Nullness Checker to treat calls to Map. get| precisely rather than assuming it may
always return null. In particular, a call mymap.get (mykey) returns a non-null value if two conditions are satisfied:

1. mymap’s values are all non-null; that is, mymap was declared as Map<KeyType, @NonNull ValueType>.
Note that @NonNull is the default type, so it need not be written explicitly.

2. mykey is a key in mymap; that is, mymap.containsKey (mykey) returns true. You express this fact to the
Nullness Checker by declaring mykey as @KeyFor ("mymap") KeyType mykey. For a local variable, you
generally do not need to write the @KeyFor ("mymap") type qualifier, because it can be inferred.

If either of these two conditions is violated, then mymap.get (mykey) has the possibility of returning null.

The command-line argument -AassumeKeyFor makes the Nullness Checker not run the Map Key Checker. The
Nullness Checker will unsoundly assume that the argument to Map.get is a key for the receiver map. That is, the
second condition above is always considered to be true.

3.3 Writing nullness annotations

3.3.1 Implicit qualifiers

The Nullness Checker adds implicit qualifiers, reducing the number of annotations that must appear in your code (see
Section [31.4). For example, enum types are implicitly non-null, so you never need to write @NonNull MyEnumType.
If you want details about implicitly-added nullness qualifiers, see the implementation of NullnessAnnotatedTypeFactoryl

3.3.2 Default annotation

Unannotated references are treated as if they had a default annotation. All types default to @NonNull, except that
@Nullable is used for casts, locals, instanceof, and implicit bounds (see Section @]) A user can choose a different
defaulting rule by writing a @DefaultQualifier annotation on a package, class, or method. In the example below,
fields are defaulted to @Nullable instead of @NonNull.

@DefaultQualifier (value = Nullable.class, locations = TypeUseLocation.FIELD)
class MyClass {

Object nullableField = null;

@NonNull Object nonNullField = new Object();

33

../api/org/checkerframework/checker/initialization/qual/Initialized.html
../api/org/checkerframework/checker/initialization/qual/UnknownInitialization.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html#get(java.lang.Object)
../api/org/checkerframework/checker/nullness/NullnessAnnotatedTypeFactory.html
../api/org/checkerframework/framework/qual/DefaultQualifier.html

3.3.3 Conditional nullness

The Nullness Checker supports a form of conditional nullness types, via the @EnsuresNonNullIf method annotations.
The annotation on a method declares that some expressions are non-null, if the method returns true (false, respectively).

Consider|java.lang.Class. Method Class.getComponentType () may return null, but it is specified to return a
non-null value if Class.isArray ()|is true. You could declare this relationship in the following way (this particular
example is already done for you in the annotated JDK that comes with the Checker Framework):

class Class<T> {
@EnsuresNonNullIf (expression="getComponentType ()", result=true)
public native boolean isArray();

public native @Nullable Class<?> getComponentType () ;

A client that checks that a Class reference is indeed that of an array, can then de-reference the result of
Class.getComponentType safely without any nullness check. The Checker Framework source code itself uses
such a pattern:

if (clazz.isArray()) {
// no possible null dereference on the following line
TypeMirror componentType = typeFromClass(clazz.getComponentType());

}

Another example is Queue . peek and |Queue.poll, which return non-null if |1 sEmpty returns false.

The argument to @EnsuresNonNullIf is a Java expression, including method calls (as shown above), method
formal parameters, fields, etc.; for details, see Section[31.8] More examples of the use of these annotations appear in the
Javadoc for @EnsuresNonNullIfl

3.3.4 Nullness and array initialization

Suppose that you declare an array to contain non-null elements:
Object [] oa = new Object[10];

(recall that Object means the same thing as @NonNull Object). By default, the Nullness Checker unsoundly permits
this code.

To make the Nullness Checker conservatively reject code that may leave a non-null value in an array, use the
command-line option -Alint=soundArrayCreationNullness. The option is currently disabled because it makes the
checker issue many false positive errors.

With the option enabled, you can write your code to create a nullable or lazy-nonnull array, initialize each component,
and then assign the result to a non-null array:

@MonotonicNonNull Object [] temp = new @MonotonicNonNull Object[10];
for (int 1 = 0; 1 < temp.length; ++1i) {

temp[i] = new Object();
}
@SuppressWarnings ("nullness") // temp array is now fully initialized
@NonNull Object [] oa = temp;

Note that the checker is currently not powerful enough to ensure that each array component was initialized.

Therefore, the last assignment needs to be trusted: that is, a programmer must verify that it is safe, then write a
@SuppressWarnings annotation.

34

../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Class.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Class.html#getComponentType()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Class.html#isArray()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Queue.html#peek()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Queue.html#poll()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Collection.html#isEmpty()
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html

3.3.5 Nullness and conversions from collections to arrays

The nullness semantics of Collection.toArray (T []) cannot be captured by just the nullness type system, though
the Nullness Checker contains special-case code to type-check calls to toArray. Therefore, you will probably have to
write @SuppressWarnings ("nullness") on any overriding definitions of toArray.

The nullness type of the returned array depends on the size of the passed parameter. In particular, the returned array
component is of type @NonNull if the following conditions hold:

e The receiver collection’s type argument (that is, the element type) is @NonNull, and
e The passed array size is less than or equal to the collection size. The Nullness Checker uses these heuristics to
handle the most common cases:

— the argument has length O:

* an empty array initializer, e.g. c.toArray (new String[] {}),or
* array creation tree of size 0, e.g. c.toArray (new String[0]).

— array creation tree with a collection size () method invocation as argument c.toArray (new String[c.size()]).

Additionally, when you supply the ~Alint=trustArrayLenZero command-line option, acall to Collection.toArray
will be estimated to return an array with a non-null component type if the argument is a field access where the field
declaration has a/@ArrayLen (0) annotation. This trusts the @ArrayLen (0) annotation, but does not verify it. Run the
Constant Value Checker (see Chapter 22] page to verify that annotation.

Note: The nullness of the returned array doesn’t depend on the passed array nullness. This is a fact about
Collection.toArray (T []), not a limitation of this heuristic.

3.3.6 Run-time checks for nullness

When you perform a run-time check for nullness, such as if (x != null) ..., then the Nullness Checker refines the
type of x to @NonNull. The refinement lasts until the end of the scope of the test or until x may be side-effected. For
more details, see Section 31.7

3.3.7 Inference of @NonNull and @Nullable annotations

It can be tedious to write annotations in your code. Tools exist that can automatically infer annotations and insert them
in your source code. (This is different than type qualifier refinement for local variables (Section [31.7), which infers a
more specific type for local variables and uses them during type-checking but does not insert them in your source code.
Type qualifier refinement is always enabled, no matter how annotations on signatures got inserted in your source code.)

Your choice of tool depends on what default annotation (see Section [3.3.2)) your code uses. You only need one of
these tools.

o Inference of |eNullable: If your code uses the standard CLIMB-to-top default (Section|31.5.3)) or the NonNull
default, then use the |AnnotateNullable tool of the Daikon invariant detector.
e Inference of @NonNull: If your code uses the Nullable default (this is unusual), use one of these tools:

— Non-null checker and inferencer of the JastAdd Extensible Compiler.

3.4 Suppressing nullness warnings

When the Nullness Checker reports a warning, it’s best to change the code or its annotations, to eliminate the warning.
Alternately, you can suppress the warning, which does not change the code but prevents the Nullness Checker from
reporting this particular warning to you.

The Checker Framework supplies several ways to suppress warnings, most notably the
@SuppressWarnings ("nullness") annotation (see Chapter[32). An example use is

35

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Collection.html#toArray(T[])
../api/org/checkerframework/common/value/qual/ArrayLen.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Collection.html#toArray(T[])
../api/org/checkerframework/checker/nullness/qual/Nullable.html
http://plse.cs.washington.edu/daikon/download/doc/daikon.html#AnnotateNullable
http://plse.cs.washington.edu/daikon/
../api/org/checkerframework/checker/nullness/qual/NonNull.html
https://jastadd.cs.lth.se/jastadd-tutorial-examples/non-null-types-for-java/
https://jastadd.cs.lth.se/

// might return null
@Nullable Object getObject(...) { ... }

void myMethod () {
@SuppressWarnings ("nullness") // with argument x, getObject always returns a non-null value
@NonNull Object 02 = getObject (x);

The Nullness Checker supports an additional warning suppression string, nullness:generic.argument. Use of
@SuppressWarnings ("nullness:generic.argument™) causes the Nullness Checker to suppress warnings related
to misuse of generic type arguments. One use for this key is when a class is declared to take only @NonNull type
arguments, but you want to instantiate the class with a @Nullable type argument, as in List<@Nullable Object>.

The Nullness Checker also permits you to use assertions or method calls to suppress warnings; see below.

3.4.1 Suppressing warnings with assertions and method calls

Occasionally, it is inconvenient or verbose to use the @SuppressWarnings annotation. For example, Java does
not permit annotations such as @SuppressWarnings to appear on statements. In such cases, you can use the
@AssumeAssertion string in an assert message (see Section[32.2)).

If you need to suppress a warning within an expression, then sometimes writing an assertion is not convenient. In
such a case, you can suppress warnings by writing a call to the NullnessUtil.castNonNull method. The rest of this
section discusses the castNonNull method.

The Nullness Checker considers both the return value, and also the argument, to be non-null after the castNonNull
method call. The Nullness Checker issues no warnings in any of the following code:

// One way to use castNonNull as a cast:
@NonNull String s = castNonNull (possiblyNulll);

// Another way to use castNonNull as a cast:
castNonNull (possiblyNull2) .toString();

// It is possible, but not recommmended, to use castNonNull as a statement:
// (It would be better to write an assert statement with @AssumeAssertion
// in its message, instead.)

castNonNull (possiblyNull3);

possiblyNull3.toString();

The castNonNull method throws AssertionError if Java assertions are enabled and the argument is null.
However, it is not intended for general defensive programming; see Section [32.2.1]
To use the castNonNull method, the checker-util. jar file must be on the classpath at run time.

The Nullness Checker introduces a new method, rather than re-using
an existing method such as org.junit.Assert.assertNotNull (Object) or
com.google.common.base.Preconditions.checkNotNull (Object). Those methods are commonly used

for defensive programming, so it is impossible to know the programmer’s intent when writing them. Therefore, it is
important to have a method call that is used only for warning suppression. See Section [32.2.1]for a discussion of the
distinction between warning suppression and defensive programming.

3.4.2 Null arguments to collection classes

For collection methods with Object formal parameter type, such as|contains) indexOf} and remove, the annotated
JDK forbids null as an argument.

The reason is that some implementations (like ConcurrentHashMap) throw NullPointerException if null is
passed. It would be unsound to permit null, because it could lead to a false negative: the Checker Framework issuing
no warning even though a NullPointerException can occur at run time.

36

../api/org/checkerframework/checker/nullness/util/NullnessUtil.html#castNonNull-T-
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Collection.html#contains(java.lang.Object)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/AbstractList.html#indexOf(java.lang.Object)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Collection.html#remove(java.lang.Object)

However, many other common implementations permit such calls, so some users may wish to sacrifice soundness for
a reduced number of false positive warnings. To permit null as an argument to these methods, pass the command-line
argument —Astubs=collection-object-parameters-may-be-null.astub.

3.5 Examples

3.5.1 Tiny examples

To try the Nullness Checker on a source file that uses the @NonNul1|qualifier, use the following command (where javac
is the Checker Framework compiler that is distributed with the Checker Framework, see Section [37.3]for details):

javac -processor org.checkerframework.checker.nullness.NullnessChecker docs/examples/NullnessExample. java

Compilation will complete without warnings.
To see the checker warn about incorrect usage of annotations (and therefore the possibility of a null pointer exception
at run time), use the following command:

javac -processor org.checkerframework.checker.nullness.NullnessChecker docs/examples/NullnessExampleWithWarnings. java

The compiler will issue two warnings regarding violation of the semantics of @NonNulll

3.5.2 Example annotated source code

Some libraries that are annotated with nullness qualifiers are:

e The Nullness Checker itself.
e The Java projects in the plume-lib GitHub organization. Type-checking occurs on each build.
e The Daikon invariant detector. Run the command make check-nullness.

3.5.3 Publications

The papers “Practical pluggable types for Java” [PACT08] (ISSTA 2008, https://homes.cs.washington.edu/
~mernst/pubs/pluggable-checkers-issta2008.pdf) and “Building and using pluggable type-checkers” [DDE™ 11]]
(ICSE 2011, https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf) describe
case studies in which the Nullness Checker found previously-unknown errors in real software.

3.6 Tips for getting started

Here are some tips about getting started using the Nullness Checker on a legacy codebase. For more generic advice
(not specific to the Nullness Checker), see Section 2.4.2] Also see the Checker Framework tutorial (https://
checkerframework.org/tutorial/), which includes an example of using the Nullness Checker.

Your goal is to add @Nullable annotations to the types of any variables that can be null. (The default is to assume
that a variable is non-null unless it has a @Nullable annotation.) Then, you will run the Nullness Checker. Each of
its errors indicates either a possible null pointer exception, or a wrong/missing annotation. When there are no more
warnings from the checker, you are done!

We recommend that you start by searching the code for occurrences of null in the following locations; when you
find one, write the corresponding annotation:

e in Javadoc: add @Nullable annotations to method signatures (parameters and return types).

e return null: add a @Nullable annotation to the return type of the given method.

e param == null: when a formal parameter is compared to null, then in most cases you can add a @Nullable
annotation to the formal parameter’s type

37

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
https://github.com/plume-lib/
http://plse.cs.washington.edu/daikon/
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf
https://checkerframework.org/tutorial/
https://checkerframework.org/tutorial/
../api/org/checkerframework/checker/nullness/qual/Nullable.html

e TypeName field = null;: when a field is initialized to null in its declaration, then it needs either a
@Nullable|or a/@MonotonicNonNull annotation. If the field is always set to a non-null value in the constructor,
then you can just change the declaration to Type field;, without an initializer, and write no type annotation
(because the default is @NonNull).

e declarations of contains, containsKey, containsValue, equals, get, indexOf, last IndexOf, and remove
(with Object as the argument type): change the argument type to @Nullable Object; for remove, also change
the return type to @Nullable Object.

You should ignore all other occurrences of null within a method body. In particular, you rarely need to annotate local
variables (except their type arguments or array element types).

Only after this step should you run the Nullness Checker. The reason is that it is quicker to search for places to
change than to repeatedly run the checker and fix the errors it tells you about, one at a time.

Here are some other tips:

e In any file where you write an annotation such as @Nullable, don’t forget to add import
org.checkerframework.checker.nullness.qual.*;.

e To indicate an array that can be null, write, for example: int @Nullable [].
By contrast, @Nullable Object [] means a non-null array that contains possibly-null objects.

o If you know that a particular variable is definitely not null, but the Nullness Checker estimates that the variable
might be null, then you can make the Nullness Checker trust your judgment by writing an assertion (see

Section[32.2)):
assert var != null : "@AssumeAssertion(nullness)";

e To indicate that a routine returns the same value every time it is called, use|@Pure| (see Section [31.7.3).
e To indicate a method precondition (a contract stating the conditions under which a client is allowed to call it),
you can use annotations such as¢RequiresNonNull|(see Section[3.2.2).

3.7 Other tools for nullness checking

The Checker Framework’s nullness annotations are similar to annotations used in other tools. You might prefer to use
the Checker Framework because it has a more powerful analysis that can warn you about more null pointer errors in
your code. Most of the other tools are bug-finding tools rather than verification tools, since they give up precision,
soundness, or both in favor of being fast and easy to use. Also see Section [38.10.1] for a comparison to other tools.

If your code is already annotated with a different nullness annotation, the Checker Framework can type-check your
code. It treats annotations from other tools as if you had written the corresponding annotation from the Nullness Checker,
as described in Figure If the other annotation is a declaration annotation, it may be moved; see Section [38.6.8]

The Checker Framework may issue more or fewer errors than another tool. This is expected, since each tool uses a
different analysis. Remember that the Checker Framework aims at soundness: it aims to never miss a possible null
dereference, while at the same time limiting false reports. Also, note SpotBugs’s non-standard meaning for @Nullable
(Section[3.7.2).

Java permits you to import at most one annotation of a given name. For example, if you use both android.annotation.NonNull
and lombok.NonNull in your source code, then you must write at least one of them in fully-qualified form, as
@android.annotation.NonNull rather than as @NonNull.

3.7.1 Which tool is right for you?

Different tools are appropriate in different circumstances. Section [38.10.1|compares verification tools like the Checker
Framework with bug detectors like SpotBugs and Error Prone. In brief, a bug detector is easier to use because it requires
fewer annotations, but it misses lots of real bugs that a verifier finds. You should use whichever tool is appropriate for
the importance of your code.

You may also choose to use multiple tools, especially since each tool focuses on different types of errors. If you
know that you will eventually want to do verification for some particular task (say, nullness checking), there is little

38

../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
../api/org/checkerframework/dataflow/qual/Pure.html
../api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html

android.annotation.NonNull

android.support.annotation.NonNull

android.support.annotation.RecentlyNonNull

androidx.annotation.NonNull

androidx.annotation.RecentlyNonNull

com.android.annotations.NonNull

com.google.firebase.database.annotations.NotNull

com.google.firebase.internal. NonNull

com.mongodb.lang.NonNull

com.sun.istack.NotNull

com.sun.istack.internal. NotNull

com.unboundid.util.NotNull

edu.umd.cs.findbugs.annotations.NonNull

io.micrometer.core.lang.NonNull

io.reactivex.annotations.NonNull

io.reactivex.rxjava3.annotations.NonNull

javax.annotation.Nonnull

/I The field might contain a null value until it is persisted.
javax.validation.constraints.NotNull

libcore.util. NonNull

lombok.NonNull

org.antlr.v4.runtime.misc.NotNull

org.checkerframework.checker.nullness.compatqual.NonNullDecl

org.checkerframework.checker.nullness.compatqual.NonNullType

org.codehaus.commons.nullanalysis.NotNull

org.eclipse.jdt.annotation.NonNull

org.eclipse.jgit.annotations.NonNull

org.eclipse.lsp4j.jsonrpc.validation.NonNull

org.jetbrains.annotations.NotNull

org.jmlspecs.annotation.NonNull

org.netbeans.api.annotations.common.NonNull

org.springframework.lang.NonNull

reactor.util.annotation.NonNull

android.annotation.Nullable

android.support.annotation.Nullable

android.support.annotation.RecentlyNullable

androidx.annotation.Nullable

androidx.annotation.RecentlyNullable

com.android.annotations.Nullable

com.beust.jcommander.internal.Nullable

com.google.api.server.spi.config.Nullable

com.google.firebase.database.annotations.Nullable

com.google.firebase.internal.Nullable

com.google.gerrit.common.Nullable

com.mongodb.lang.Nullable

com.sun.istack.Nullable

com.sun.istack.internal.Nullable

com.unboundid.util.Nullable

edu.umd.cs.findbugs.annotations.CheckForNull

edu.umd.cs.findbugs.annotations.Nullable

edu.umd.cs.findbugs.annotations.PossiblyNull

edu.umd.cs.findbugs.annotations.UnknownNullness >~

io.micrometer.core.lang.Nullable

io.reactivex.annotations.Nullable

io.reactivex.rxjava3.annotations.Nullable

javax.annotation.CheckForNull

javax.annotation.Nullable

= org.checkerframework.checker.nullness.qual.NonNull

= org.checkerframework.checker.nullness.qual.Nullable

point using the nullness analysis of bug detector such as SpotBugs first. It is easier to go straight to using the Checker
Framework.

If some other tool discovers a nullness error that the Checker Framework does not, please report it to us (see
Section[39.2) so that we can enhance the Checker Framework. For example, SpotBugs might detect an error that the
Nullness Checker does not, if you are using an unnannotated library (including an unannotated part of the JDK) and
running the Checker Framework in an unsound mode (see Section [2.2.2).

3.7.2 Incompatibility note about FindBugs and SpotBugs @Nullable

FindBugs and SpotBugs have a non-standard definition of @Nullable. This treatment is not documented in its own
Javadoc; it is different from the definition of @Nullable in every other tool for nullness analysis; it means the same
thing as @NonNull when applied to a formal parameter; and it invariably surprises programmers. Thus, SpotBugs’s
@Nullable is detrimental rather than useful as documentation. In practice, your best bet is to not rely on SpotBugs for
nullness analysis, even if you find SpotBugs useful for other purposes.

You can skip the rest of this section unless you wish to learn more details.

SpotBugs suppresses all warnings at uses of a @Nullable variable. (You have to use @CheckForNull to indicate a
nullable variable that SpotBugs should check.) For example:

// declare getObject () to possibly return null
@Nullable Object getObject() { ... }

void myMethod () {
@Nullable Object o = getObject();
// SpotBugs issues no warning about calling toString on a possibly-null reference!
o.toString();

}

The Checker Framework does not emulate this non-standard behavior of SpotBugs, even if the code uses FindBugs/Spot-
Bugs annotations.

With SpotBugs, you annotate a declaration, which suppresses checking at all client uses, even the places that
you want to check. It is better to suppress warnings at only the specific client uses where the value is known to be
non-null; the Checker Framework supports this, if you write @SuppressiWarnings at the client uses. The Checker
Framework also supports suppressing checking at all client uses, by writing a @SuppressWarnings annotation at the
declaration site. Thus, the Checker Framework supports both use cases, whereas SpotBugs supports only one and gives
the programmer less flexibility.

In general, the Checker Framework will issue more warnings than SpotBugs, and some of them may be about real
bugs in your program. See Section [3.4] for information about suppressing nullness warnings.

FindBugs and SpotBugs made a poor choice of names. The choice of names should make a clear distinction between
annotations that specify whether a reference is null, and annotations that suppress false warnings. The choice of names
should also have been consistent for other tools, and intuitively clear to programmers. The FindBugs/SpotBugs choices
make the SpotBugs annotations less helpful to people, and much less useful for other tools.

Another problem is that the SpotBugs @Nullable annotation is a declaration annotation rather than a type annotation.
This means that it cannot be written in important locations such as type arguments, and it is misleading when written on
a field of array type or a method that returns an array.

Overall, it is best to stay away from the SpotBugs nullness annotations and analysis, and use a tool with a more
principled design.

3.7.3 Relationship to Optional<T>

Many null pointer exceptions occur because the programmer forgets to check whether a reference is null before
dereferencing it. Java 8’s Opt ional<T> class provides a partial solution: a programmer must call the get method to

40

https://www.javadoc.io/doc/com.github.spotbugs/spotbugs-annotations/latest/edu/umd/cs/findbugs/annotations/Nullable.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html

access the value, and the designers of Optional hope that the syntactic occurrence of the get method will remind
programmers to first check that the value is present. This is still easy to forget, however.

The Checker Framework contains an Optional Checker (see Chapter [5) that guarantees that programmers use
Optional correctly, such as calling isPresent before calling get.

There are some limitations to the utility of Opt ional, which might lead to you choose to use regular Java references
rather than Optional. (For more details, see the article “Nothing is better than the Optional type”.)

e It is still possible to call get on a non-present Optional, leading to a NoSuchElementException. In other
words, Optional doesn’t solve the underlying problem — it merely converts a NullPointerException into a
NoSuchElementException exception, and in either case your code crashes.

NullPointerException is still possible in code that uses Optional.

Optional adds syntactic complexity, making your code longer and harder to read.

Optional adds time and space overhead.

Optional does not address important sources of null pointer exceptions, such as partially-initialized objects and
calls to Map.get.

The Nullness Checker does not suffer these limitations. Furthermore, it works with existing code and types, it
ensures that you check for null wherever necessary, and it infers when the check for null is not necessary based on
previous statements in the method.

Java’s Optional class provides utility routines to reduce clutter when using Optional. The Nullness Checker
provides an [Opt | class that provides all the same methods, but written for regular possibly-null Java references. To use
the Opt|class, the checker-util. jar file must be on the classpath at run time.

3.8 Initialization Checker

The Initialization Checker determines whether an object is initialized or not. For any object that is not fully initialized,
the Nullness Checker treats its fields as possibly-null — even fields annotated as @NonNull. (The Initialization Checker
focuses on @NonNull fields, to detect null pointer exceptions when using them. It does not currently ensure that
primitives or @Nullable fields are initialized. Use the Initialized Fields Checker (Chapter 25] page [I53) to check
initialization with respect to properties other than nullness.)

Every object’s fields start out as null. By the time the constructor finishes executing, the @NonNull fields have been
set to a different value. Your code can suffer a NullPointerException when using a @NonNull field, if your code uses
the field during initialization. The Nullness Checker prevents this problem by warning you anytime that you may be
accessing an uninitialized field. This check is useful because it prevents errors in your code. However, the analysis can
be confusing to understand. If you wish to disable the initialization checks, see Section [3.8.8]

An object is partially initialized from the time that its constructor starts until its constructor finishes. This is relevant
to the Nullness Checker because while the constructor is executing — that is, before initialization completes — a
@NonNull field may be observed to be null, until that field is set. In particular, the Nullness Checker issues a warning
for code like this:

public class MyClass {
private @NonNull Object f;
public MyClass(int x) {
// Error because constructor contains no assignment to this.f.
// By the time the constructor exits, f must be initialized to a non-null value.
}
public MyClass(int x, int y) {
// Error because this.f is accessed before f is initialized.
// At the beginning of the constructor’s execution, accessing this.f
// yields null, even though field f has a non-null type.
this.f.toString();
f = new Object();

41

https://homes.cs.washington.edu/~mernst/advice/nothing-is-better-than-optional.html
../api/org/checkerframework/checker/nullness/util/Opt.html
../api/org/checkerframework/checker/nullness/util/Opt.html

@underInitialization(Object.class) Giraffe

+

@underInitialization Object @underInitialization(Vertebrate.class) Giraffe

A

@underInitialization(Mammal.class) Giraffe

+

@underInitialization(Giraffe.class) Giraffe

@UnknownInitialization Object

@Initialized Object

@UnknownInitialization Date

@Initialized Date @underInitialization Date

Figure 3.3: Partial type hierarchy for the Initialization type system. @UnknownInitialization and
@UnderInitialization each take an optional parameter indicating how far initialization has proceeded, and the right
side of the figure illustrates its type hierarchy in more detail.

}

public MyClass(int x, int y, int z) {
m();
f = new Object();

}

public void m() {
// Error because this.f is accessed before f is initialized,
// even though the access is not in a constructor.
// When m is called from the constructor, accessing f yields null,
// even though field f has a non-null type.
this.f.toString();

}

When a field £ is declared with a|@NonNull type, then code can depend on the fact that the field is not null. However,
this guarantee does not hold for a partially-initialized object.
The Initialization Checker uses three annotations to indicate whether an object is initialized (all its @NonNull fields
have been assigned), under initialization (its constructor is currently executing), or its initialization state is unknown.
These distinctions are mostly relevant within the constructor, or for references to this that escape the constructor
(say, by being stored in a field or passed to a method before initialization is complete). Use of initialization annotations
is rare in most code.

3.8.1 Initialization qualifiers
The initialization hierarchy is shown in Figure[3.3] The initialization hierarchy contains these qualifiers:

@Initialized indicates a type that contains a fully-initialized object. Initialized is the default, so there is little
need for a programmer to write this explicitly.

QUnknownInitialization indicates atype that may contain a partially-initialized object. In a partially-initialized
object, fields that are annotated as @NonNull may be null because the field has not yet been assigned.
@UnknownInitialization takes a parameter that is the class the object is definitely initialized up to. For
instance, the type @UnknownInitialization (Foo.class) denotes an object in which every fields declared in
Foo or its superclasses is initialized, but other fields might not be. Just @UnknownInitialization is equivalent
to @UnknownInitialization (Object.class).

QUnderInitialization indicates a type that contains a partially-initialized object that is under initialization —
that is, its constructor is currently executing. It is otherwise the same as @UnknownInitialization. Within the
constructor, this has/@UnderInitialization type until all the @NonNull fields have been assigned.

A partially-initialized object (this in a constructor) may be passed to a helper method or stored in a variable; if so, the
method receiver, or the field, would have to be annotated as QUnknownInitializationoras @UnderInitialization.

42

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/initialization/qual/Initialized.html
../api/org/checkerframework/checker/initialization/qual/UnknownInitialization.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html

Declarations Expression | Expression’s nullness type, or checker error
class C {
@NonNull Object f£;
@Nullable Object g;
}
@NonNull @Initialized C a; a @NonNull
a.f @NonNull
a.g @Nullable
@NonNull QUnderInitialization C b; b @NonNull
b.f @MonotonicNonNull
b. @Nullable
@Nullable @Initialized C c; c @Nullable
c.f error: deref of nullable
c. error: deref of nullable
@Nullable QUnderInitialization C d; | d @Nullable
d.f error: deref of nullable
d.g error: deref of nullable

Figure 3.4: Examples of the interaction between nullness and initialization. Declarations are shown at the left for
reference, but the focus of the table is the expressions and their nullness type or error.

If a reference has @UnknownInitialization or @UnderInitialization type, then all of its @NonNull fields are
treated as|@MonotonicNonNull: when read, they are treated as being|@Nullable, but when written, they are treated as
being @NonNull,

The initialization hierarchy is orthogonal to the nullness hierarchy. It is legal for a reference
to be @NonNull @UnderInitialization, @Nullable @UnderInitialization, @NonNull @Initialized, or
@Nullable @Initialized. The nullness hierarchy tells you about the reference itself: might the reference be
null? The initialization hierarchy tells you about the @NonNull fields in the referred-to object: might those fields be
temporarily null in contravention of their type annotation? Figure [3.4] contains some examples.

3.8.2 How an object becomes initialized

Within the constructor, this starts out with @UnderInitialization|type. As soon as all of the @NonNull|fields
in class C have been initialized, then this is treated as @UnderInitialization (C). This means that this is still
being initialized, but all initialization of C’s fields is complete, including all fields of supertypes. Eventually, when all
constructors complete, the type is @Initialized.

The Initialization Checker issues an error if the constructor fails to initialize any @NonNull field. This ensures that
the object is in a legal (initialized) state by the time that the constructor exits. This is different than Java’s test for
definite assignment (see JLS ch.16), which does not apply to fields (except blank final ones, defined in JLS §4.12.4)
because fields have a default value of null.

All @NonNull fields must either have a default in the field declaration, or be assigned in the constructor or in a
helper method that the constructor calls. If your code initializes (some) fields in a helper method, you will need to
annotate the helper method with an annotation such as @EnsuresNonNull|({"fieldl", "field2"}) for all the fields
that the helper method assigns.

3.8.3 Q@UnderInitialization examples

The most common use for the @UnderInitialization annotation is for a helper routine that is called by constructor.
For example:

43

../api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
../api/org/checkerframework/checker/initialization/qual/Initialized.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-16.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-4.html#jls-4.12.4
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html

class MyClass {
Object fieldl;
Object field2;
Object field3;

public MyClass(String argl) {
this.fieldl = argl;
init_other_fields();

// A helper routine that initializes all the fields other than fieldl.
@EnsuresNonNull ({"field2", "field3"})
private void init_other_fields(QUnderInitialization(Object.class) MyClass this) {
field2 = new Object();
field3 = new Object();

public MyClass(String argl, String arg2, String arg3) {
this.fieldl = argl;
this.field2 = arg2;
this.field3 arg3;
checkRep () ;

// Verify that the representation invariants are satisfied.

// Works as long as the MyClass fields are initialized, even if the receiver’s

// class is a subclass of MyClass and not all of the subclass fields are initialized.
private void checkRep (€UnderInitialization (MyClass.class) MyClass this) {

At the end of the constructor, this is not fully initialized. Rather, itis @UnderInitialization(CurrentClass.class).
The reason is that there might be subclasses with uninitialized fields. The following example illustrates this:

class A {
@NonNull String a;
public A() {
a = llll,.

// Now, all fields of A are initialized.
// However, if this constructor is invoked as part of ‘new B()’, then
// the fields of B are not yet initialized.
// 1f we would type ’'this’ as @Initialized, then the following call is valid:
doSomething () ;
}
void doSomething() {}

class B extends A {
@NonNull String b;

44

@Override

void doSomething() {
// Dereferencing 'b’ is ok, because ’this’ is @Initialized and ’'b’ @NonNull.
// However, when executing ’‘new B()’, this line throws a null-pointer exception.
b.toString();

3.8.4 Partial initialization

So far, we have discussed initialization as if it is an all-or-nothing property: an object is non-initialized until initialization
completes, and then it is initialized. The full truth is a bit more complex: during the initialization process an object can
be partially initialized, and as the object’s superclass constructors complete, its initialization status is updated. The
Initialization Checker lets you express such properties when necessary.

Consider a simple example:

class A {
Object aField;
A() {
aField = new Object();

}
class B extends A {
Object bField;
B() {

super

0
bField =

new Object();

Consider what happens during execution of new B().

1. B’s constructor begins to execute. At this point, neither the fields of A nor those of B have been initialized yet.

2. B’s constructor calls A’s constructor, which begins to execute. No fields of A nor of B have been initialized yet.

3. A’s constructor completes. Now, all the fields of A have been initialized, and their invariants (such as that field a
is non-null) can be depended on. However, because B’s constructor has not yet completed executing, the object
being constructed is not yet fully initialized.

4. B’s constructor completes. The fields declared in A and B are initialized. However, the type system cannot assume
that the object is fully initialized — there might be a class C extends B {...}, and B’s constructor might
have been invoked from that.

At any moment during initialization, the superclasses of a given class can be divided into those that have completed
initialization and those that have not yet completed initialization. More precisely, at any moment there is a point in the
class hierarchy such that all the classes above that point are fully initialized, and all those below it are not yet initialized.
As initialization proceeds, this dividing line between the initialized and uninitialized classes moves down the type
hierarchy.

The Nullness Checker lets you indicate where the dividing line is between the initialized and non-initialized classes.
The @UnderInitialization(classliteral) indicates the first class that is known to be fully initialized. When
you write |@UnderInitialization/(OtherClass.class) MyClass x;, that means that variable x is initialized for
OtherClass and its superclasses, and x is (possibly) uninitialized for subclasses of OtherClass.

The example above lists 4 moments during construction. At those moments, the type of the object being constructed
is:

45

../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html

. @UnderInitialization B
. @UnderInitialization A
. @UnderInitialization(A.class) A
. @UnderInitialization(B.class) B

AW N =

Note that neither @UnderInitialization (A.class) Anor @UnderInitialization(A.class) B may be used
where <@]Initialized A> is required. Permitting that would be unsound. For example, consider this code, where all
types are @NonNull because @NonNull is the default annotation:

class A {
Object aField;
A() {
aField = new Object();
}
Object get () {
return aField;

}
class B extends A {
Object bField;
B() {
super (
bField
}
@override
Object get () {
return bField;

)i

new Object();

Given these declarations:

@Initialized A w;
@Initialized B x;
@UnderInitialization(A.class) A y;
@UnderInitialization(A.class) B z;

the expressions w.get () and x.get () evaluate to a non-null value, but y.get () and z.get () might evaluate to null.
(v.get () might evaluate to null because the run-time type of y might be B. That is, y and z might refer to the same
value, just as w and x might refer to the same value.)

3.8.5 Method calls from the constructor

Consider the following incorrect program.

class A {
Object aField;
AQ) |
aField = new Object();
process(5); // illegal call
}

public void process(int arg) { ... }

46

The call to process () is not legal. process () is declared to be called on a fully-initialized receiver, which is
the default if you do not write a different initialization annotation. At the call to process (), all the fields of A have
been set, but this is not fully initialized because fields in subclasses of A have not yet been set. The type of this is
@UnderInitialization(A.class), meaning that this is partially-initialized, with the A part of initialization done
but the initialization of subclasses not yet complete.

The Initialization Checker output indicates this problem:

Client.java:7: error: [method.invocation] call to process(int) not allowed on the given receiver.
process(5); // illegal call
found : @QUnderInitialization(A.class) A
required: @Initialized A

Here is a subclass and client code that crashes with a NullPointerException.

class B extends A {
List<Integer> processed;
B() {
super () ;
processed = new ArrayList<Integer>();
}
@override
public void process(int arg) {
super () ;
processed.add (arg);

}
class Client {
public static void main(String[] args) {
new B();

You can correct the problem in multiple ways.

One solution is to not call methods that can be overridden from the constructor: move the call to process () to after
the constructor has completed.

Another solution is to change the declaration of process ():

public void process(@UnderInitialization(A.class) A this, int arg) { ... }

If you choose this solution, you will need to rewrite the definition of B.process () so that it is consistent with the
declared receiver type.

A non-solution is to prevent subclasses from overriding process () by using final on the method. This doesn’t
work because even if process () is not overridden, it might call other methods that are overridden.

As final classes cannot have subclasses, they can be handled more flexibly: once all fields of the final class have
been initialized, this is fully initialized.

3.8.6 Initialization of circular data structures

There is one final aspect of the initialization type system to be considered: the rules governing reading and writing to
objects that are currently under initialization (both reading from fields of objects under initialization, as well as writing
objects under initialization to fields). By default, only fully-initialized objects can be stored in a field of another object.
If this was the only option, then it would not be possible to create circular data structures (such as a doubly-linked list)

47

x.f f is @NonNull fis @Nullable

x1is @Initialized @Initialized @NonNull @Initialized @Nullable
x 1S @UnderInitialization @UnknownInitialization @Nullable | @UnknownInitialization @Nullable
x 1S @UnknownInitialization | QUnknownInitialization @Nullable | @UnknownInitialization @Nullable

Figure 3.5: Initialization rules for reading a @NotOnlyInitialized field f.

x.f =y ‘ yis @Initialized yis@UnderInitialization vy is @UnknownInitialization
x1is @Initialized yes no no
x1s @UnderInitialization yes yes yes
x is @UnknownInitialization yes no no

Figure 3.6: Rules for deciding when an assignment x.f = y is allowed for a|@NotOnlyInitialized|field £.

where fields have a @NonNull|type. However, the annotation |@NotOnlyInitialized can be used to indicate that a
field can store objects that are currently under initialization. In this case, the rules for reading and writing to that field
become a little bit more interesting, to soundly support circular structures.

The rules for reading from a|@NotOnlyInitialized field are summarized in Figure[3:5] Essentially, nothing is
known about the initialization status of the value returned unless the receiver was|@Initialized.

Similarly, Figure[3.6|shows under which conditions an assignment x. £ = y is allowed for a[@NotOnlyInitialized
field £. If the receiver x is|@UnderInitialization, then any y can be of any initialization state. If y is known to be
fully initialized, then any receiver is allowed. All other assignments are disallowed.

These rules allow for the safe initialization of circular structures. For instance, consider a doubly linked list:

class List<T> {
@NotOnlyInitialized
Node<T> sentinel;

public List () {
this.sentinel = new Node<> (this);

void insert (@Nullable T data) {
this.sentinel.insertAfter (data);

public static void main() {
List<Integer> 1 = new List<>();
l.insert (1);
l.insert (2);

class Node<T> {
@NotOnlyInitialized
Node<T> prev;

@NotOnlyInitialized
Node<T> next;

@NotOnlyInitialized
List parent;

48

../api/org/checkerframework/checker/initialization/qual/NotOnlyInitialized.html
../api/org/checkerframework/checker/initialization/qual/NotOnlyInitialized.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/initialization/qual/NotOnlyInitialized.html
../api/org/checkerframework/checker/initialization/qual/NotOnlyInitialized.html
../api/org/checkerframework/checker/initialization/qual/Initialized.html
../api/org/checkerframework/checker/initialization/qual/NotOnlyInitialized.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html

@ullable
T data;

// for sentinel construction

Node (@UnderInitialization List parent)

this.parent = parent;
this.prev = this;
this.next = this;

// for data node construction

Node (Node<T> prev, Node<T> next, @Nullable T data)

this.parent = prev.parent;
this.prev = prev;
this.next = next;
this.data = data;

void insertAfter (@Nullable T data) {

Node<T> n = new Node<>(this, this.next,

this.next.prev = n;
this.next = n;

3.8.7 How to handle warnings

‘“error: the constructor does not initialize fields: ...”

Like any warning, “error: the constructor does not initialize fields: ...

data);

I

incorrect or your code is buggy. You can fix either the annotations or the code.

e Declare the field as|@Nullablel Recall that if you did not write an annotation, the field defaults to @NonNull.

e Declare the field as/@MonotonicNonNull. This is appropriate if the field starts out as null but is later set to a
non-null value. You may then wish to use the @EnsuresNonNull annotation to indicate which methods set the
field, and the |@RequiresNonNull annotation to indicate which methods require the field to be non-null.

e Initialize the field in the constructor or in the field’s initializer, if the field should be initialized. (In this case, the

Initialization Checker has found a bug!)

Do not initialize the field to an arbitrary non-null value just to eliminate the warning. Doing so degrades your
code: it introduces a value that will confuse other programmers, and it converts a clear NullPointerException into

a more obscure error.

“call to ... is not allowed on the given receiver”

If your code calls an instance method from a constructor, you may see a message such as the following:

MyFile.Jjava:123: error: call to initHelper() not allowed on the given receiver.

initHelper();

A

found : @UnderInitialization(com.google.Bar.class)

required: @Initialized @NonNull MyClass

49

@NonNull MyClass

indicates that either your annotations are

../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html

The problem is that the current object (this) is under initialization, but the receiver formal parameter (Section[38.6.1)
of method initHelper () is implicitly annotated as @Initialized. If initHelper () doesn’t depend on its receiver
being initialized — that is, it’s OK to call x. initHelper even if x is not initialized — then you can indicate that by
using|@UnderInitialization or|@UnknownInitialization.

class MyClass {
void initHelper (QUnknownInitialization MyClass this, String paraml) { ... }

}

You are likely to want to annotate initHelper () with @EnsuresNonNull as well; see Section[3.2.7]
You may get the “call to ... is not allowed on the given receiver” error even if your constructor has already initialized
all the fields. For this code:

public class MyClass {
@NonNull Object field;
public MyClass () {
field = new Object();
helperMethod () ;
}
private void helperMethod() {
}
}

the Nullness Checker issues the following warning:
MyClass.java:7: error: call to helperMethod() not allowed on the given receiver.

helperMethod() ;

S

found : @UnderInitialization(MyClass.class) @NonNull MyClass
required: @Initialized @NonNull MyClass
1 error

The reason is that even though the object under construction has had all the fields declared in MyClass ini-
tialized, there might be a subclass of MyClass. Thus, the receiver of helperMethod should be declared as
@UnderInitialization(MyClass.class), which says that initialization has completed for all the MyClass fields
but may not have been completed overall. If helperMethod had been a public method that could also be called
after initialization was actually complete, then the receiver should have type @UnknownInitialization, which is the
supertype of @UnknownInitialization and @UnderInitialization.

3.8.8 Suppressing warnings

To suppress most warnings related to partially-initialized values, use the warning suppression string “initialization”.
You can write @SuppressiWarnings ("initialization") on a field, constructor, or class, or pass the command-line
argument -AsuppressWarnings=initialization when running the Nullness Checker. (For more about suppressing
warnings, see Chapter [32] page[203). You will no longer get a guarantee of no null pointer exceptions, but you can still
use the Nullness Checker to find most of the null pointer problems in your code.

This suppresses warnings that are specific to the Initialization Checker, but does not suppress warnings issued by
the Checker Framework itself, such as about assignments or method overriding.

It is not possible to completely disable initialization checking while retaining nullness checking. That is because of
an implementation detail of the Nullness and Initialization Checkers: they are actually the same checker, rather than
being two separate checkers that are aggregated together.

50

../api/org/checkerframework/checker/initialization/qual/Initialized.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
../api/org/checkerframework/checker/initialization/qual/UnknownInitialization.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html

3.8.9 More details about initialization checking

Use of method annotations A method with a non-initialized receiver may assume that a few fields (but not all of
them) are non-null, and it sometimes sets some more fields to non-null values. To express these concepts, use the
@RequiresNonNull, @EnsuresNonNull, and [@EnsuresNonNullIf method annotations; see Section[3.2.2]

Source of the type system The type system enforced by the Initialization Checker is based on “Freedom Before
Commitment” [SM11]]. Our implementation changes its initialization modifiers (“committed”, “free”, and “unclas-
sified”) to “initialized”, “unknown initialization”, and “under initialization”. Our implementation also has several
enhancements. For example, it supports partial initialization (the argument to the @UnknownInitialization and
@UnderInitialization annotations). The benefit (in terms of reduced false positive initialization warnings) from
supporting partial initialization is greater than the benefit from adopting the Freedom Before Commitment system.

51

../api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html

Chapter 4

Map Key Checker

The Map Key Checker tracks which values are keys for which maps. If variable v has type @KeyFor ("m") . . ., then the
value of v is a key in Map m. That is, the expression m.containsKey (v) evaluates to true.

Section [3.2.4] describes how @KeyFor annotations enable the Nullness Checker (Chapter [3] page [30) to treat calls to
Map . get more precisely by refining its result to @NonNull in some cases.

4.1 Invoking the Map Key Checker

You will not typically run the Map Key Checker. It is automatically run by other checkers, in particular the Nullness
Checker.

You can unsoundly suppress warnings related to map keys with @SuppressWarnings ("keyfor"), or everywhere
by using command-line option ~AsuppressWarnings=keyfor; see Chapter[32} page[203

The command-line argument -AassumeKeyFor makes the Map Key Checker unsoundly assume that the argument
to Map.get is a key for the receiver map. This is like declaring the Map.get method as V get (Object key) rather
than @Nullable V get (Object key). (Just changing the JDK declaration would not work, however, because the
Map Key Checker has special-case logic for Map.get. This is different than suppressing warnings, because it changes a
method’s return type. This is not the same as assuming that the return value is @NonNull, because the map’s value type
might be @Nullable, as in Map<String, @Nullable Integer>.

4.2 Map key annotations

These qualifiers are part of the Map Key type system:

QKeyFor/(String[] maps) indicates that the value assigned to the annotated variable is a key for at least the
given maps.

@UnknownKeyFor| is used internally by the type system but should never be written by a programmer. It indicates
that the value assigned to the annotated variable is not known to be a key for any map. It is the default type
qualifier.

@KeyForBottom is used internally by the type system but should never be written by a programmer. There are no
values of this type (not even null).

The following method annotations can be used to establish a method postcondition that ensures that a certain
expression is a key for a map:

QEnsuresKeyFor (String[] value, String[] map) When the method with this annotation returns, the
expression (or all the expressions) given in the value element is a key for the given maps. More precisely, the
expression has the @KeyFor qualifier with the value arguments taken from the targetValue element of this
annotation.

52

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html#get(java.lang.Object)
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
../api/org/checkerframework/checker/nullness/qual/UnknownKeyFor.html
../api/org/checkerframework/checker/nullness/qual/KeyForBottom.html
../api/org/checkerframework/checker/nullness/qual/EnsuresKeyFor.html

@UnknownKeyFor

| @KeyFor (map1) | | @KeyFor (map2) |
FKeyFor({map1, map2} * PKeyFor ({map2, map3}1
| @KeyFor ({map1, ...,mapn}) |

@KeyForBottom

Figure 4.1: The subtyping relationship of the Map Key Checker’s qualifiers. @KeyFor (A) is a supertype of @KeyFor (B)
if and only if A is a subset of B. Qualifiers in gray are used internally by the type system but should never be written by
a programmer.

@EnsuresKeyForIf (String[] expression, boolean result, String[] map) Ifthe method with
this annotation returns the given boolean value, then the given expression (or all the given expressions) is a key
for the given maps.

4.3 Default annotations

The qualifier for the type of the null literal is @UnknownKeyFor. If null were @KeyForBottom, that would mean that
null is guaranteed to be a key for every map (which is not necessarily true).

4.3.1 Default for lower bounds

Lower bounds are defaulted to @UnknownKeyFor. However, in java.* packages, the default for lower bounds is
@KeyForBottom.

It is challenging to choose a default for lower bounds of type variables and wildcards.

Here is a comparison of two choices for lower bounds:

@KeyForBottom default @UnknownKeyFor default (current choice)
class MyClassl<@UnknownKeyFor T> { class MyClassl<T> {
T var = null; // OK T var = null; // OK

class MyClass2<T> {

@UnknownKeyFor T var = null; // OK
class MyClass3<T> {

T var = null; // ERROR

class MySetl<T> implements Set<T> { }
MySet1<@KeyFor ("m") String> sl; // ERROR
class Set<E> { } class Set<@KeyForBottom E> { }
class MySet2<T> implements Set<T> { } class MySet2<@KeyForBottom T> implements Set<T> { }
MySet2<@KeyFor ("m") String> s2; // OK MySet2<@KeyFor ("m") String> s2; // OK

If lower bounds are defaulted to @KeyForBottom (which is not currently the case), then whenever null is assigned
to a variable whose type is a type variable, programmers must write an @UnknownKeyFor annotation on either the type
variable declaration or on variable declarations, as shown in MyClassl and MyClass2. A disadvantage of this default is
that the Map Key checker may issue warnings in code that has nothing to do with map keys, and in which no map key
annotations are used.

53

../api/org/checkerframework/checker/nullness/qual/EnsuresKeyForIf.html

If lower bounds are defaulted to @UnknownKeyFor (which is currently the case), then whenever a client might use a
@KeyFor type argument, programmers must write a @KeyForBottom annotation on the type parameter, as in MySet2
(and Set).

4.3.2 Diagnosing the need for explicit @ KeyFor on lower bounds
Under the current defaulting (lower bounds default to @UnknownKeyFor), suppose you write this code:

public class Graph<N> {
Map<N, Integer> nodes = new HashMap<>();

}

class Client {
@Nullable Graph<@KeyFor ("g.nodes") String> g;
}

The Nullness Checker issues this error message:

Graph.java:14: error: [type.argument] incompatible types in type argument.
@Nullable Graph<@KeyFor ("g.nodes") String> g;

found : @KeyFor ("this.g.nodes") String
required: [extends @UnknownKeyFor Object super @UnknownKeyFor null]

Note that the upper and lower bounds are both @UnknownKeyFor. You can make the code type-check by writing a
lower bound, which is written before the type variable name (Section [30.1.2):

public class Graph<@KeyForBottom N> ({

4.4 Examples

The Map Key Checker keeps track of which variables reference keys to which maps. A variable annotated with
@KeyFor (mapSet) can only contain a value that is a key for all the maps in mapSet. For example:

Map<String,Date> m, n;

@KeyFor ("m") String km;

@KeyFor ("n") String kn;

@KeyFor ({"m", "n"}) String kmn;

km = kmn; // OK - a key for maps m and n is also a key for map m

km = kn; // error: a key for map n is not necessarily a key for map m

As with any annotation, use of the @KeyFor annotation may force you to slightly refactor your code. For example,
this would be illegal:

Map<String,Object> m;

Collection<@KeyFor ("m") String> coll;

coll.add(x); // error: element type is @KeyFor("m") String, but x does not have that type
m.put (x, ...);

The example type-checks if you reorder the two calls:

Map<String,Object> m;

Collection<@KeyFor ("m") String> coll;

m.put (x, ...); // after this statement, x has type @KeyFor("m") String
coll.add (x); // OK

54

4.5 Inference of @KeyFor annotations

Within a method body, you usually do not have to write @KeyFor explicitly (except sometimes on type arguments),
because the checker infers it based on usage patterns. When the Map Key Checker encounters a run-time check for map
keys, such as “if (m.containsKey(k)) ...”, then the Map Key Checker refines the type of k to @KeyFor ("m")
within the scope of the test (or until k is side-effected within that scope). The Map Key Checker also infers @KeyFor
annotations based on iteration over a map’s key set| or calls to [put or containsKey. For more details about type
refinement, see Section[31.7]

Suppose we have these declarations:

Map<String,Date> m = new Map<>();
String k = "key";
@KeyFor ("m") String km;

Ordinarily, the following assignment does not type-check:
km = k; // Error since k is not known to be a key for map m.

The following examples show cases where the Map Key Checker infers a @KeyFor annotation for variable k based
on usage patterns, enabling the km = k assignment to type-check.

m.put (k, ...);
// At this point, the type of k is refined to @KeyFor("m") String.
km = k; // OK

if (m.containsKey(k)) {
// At this point, the type of k is refined to @KeyFor("m") String.
km = k; // OK

} else {
km = k; // Error since k is not known to be a key for map m.

The following example shows a case where the Map Key Checker resets its assumption about the type of a field
used as a key because that field may have been side-effected.

class MyClass {
private Map<String,Object> m;
private String k; // The type of k defaults to @UnknownKeyFor String
private @KeyFor ("m") String km;

public void myMethod() {
if (m.containsKey(k)) {
km = k; // OK: the type of k is refined to @KeyFor ("m") String

sideEffectFreeMethod();
km = k; // OK: the type of k is not affected by the method call

// and remains @KeyFor ("m") String

otherMethod () ;
km = k; // error: At this point, the type of k is once again

55

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html#keySet()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html#put(K,V)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html#containsKey(java.lang.Object)

// @UnknownKeyFor String, because otherMethod might have
// side-effected k such that it is no longer a key for map m.

@SideEffectFree
private void sideEffectFreeMethod() { ... }

private void otherMethod() { ... }

56

Chapter 5

Optional Checker for possibly-present data

Java 8 introduced the Optional|class, a container that is either empty or contains a non-null value.

Using Optional is intended to help programmers remember to check whether data is present or not. However,
Optional itself is prone to misuse. The article Nothing is better than the Optional type gives reasons to use regular
nullable references rather than Optional. However, if you do use Optional, then the Optional Checker will help you
avoid Optional’s pitfalls.

Stuart Marks gave 7 rules|to avoid problems with Optional:

Never, ever, use null for an Optional variable or return value.

Never use Optional.get () unless you can prove that the Optional is present.

Prefer alternative APIs over Optional.isPresent ()|and/Optional.get ()

It’s generally a bad idea to create an Optional for the specific purpose of chaining methods from it to get a value.
If an Optional chain has a nested Optional chain, or has an intermediate result of Optional, it’s probably too
complex.

Avoid using Optional in fields, method parameters, and collections.

Don’t use an Optional to wrap any collection type (List, Set, Map). Instead, use an empty collection to
represent the absence of values.

Rule #1 is guaranteed by the Nullness Checker (Chapter [3] page[30). Rules #2—#7 are guaranteed by the Optional
Checker, described in this chapter. (Exception: Rule #5 is not yet implemented and will be checked by the Optional
Checker in the future.)

Use of the Optional Checker guarantees that your program will not suffer a NullPointerException nor a
NoSuchElementException when calling methods on an expression of Optional type.

NS

—

5.1 How to run the Optional Checker

javac -processor optional MyFile.java ...
javac -processor org.checkerframework.checker.optional.OptionalChecker MyFile.java ...

5.2 Optional annotations

These qualifiers make up the Optional type system:

@MaybePresent| The annotated Optional container may or may not contain a value. This is the default type, so
programmers do not have to write it.

@Present| The annotated Optional container definitely contains a (non-null) value.

@OptionalBottom The annotated expression evaluates to null rather than to an Optional container. Programmers
rarely write this annotation.

57

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html
https://homes.cs.washington.edu/~mernst/advice/nothing-is-better-than-optional.html
https://stuartmarks.wordpress.com/2016/09/27/vjug24-session-on-optional/
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html#get()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html#isPresent()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html#get()
../api/org/checkerframework/checker/optional/qual/MaybePresent.html
../api/org/checkerframework/checker/optional/qual/Present.html
../api/org/checkerframework/checker/optional/qual/OptionalBottom.html

@MaybePresent
A

@Present

@optionalBottom

Figure 5.1: The subtyping relationship of the Optional Checker’s qualifiers.

@PolyPresent indicates qualifier polymorphism. For a description of qualifier polymorphism, see Section[30.2]

The subtyping hierarchy of the Optional Checker’s qualifiers is shown in Figure[5.1]

5.3 What the Optional Checker guarantees

The Optional Checker guarantees that your code will not throw an exception due to use of an absent Optional
where a present Optional is needed. More specifically, the Optional Checker will issue a warning if you call jget
ororElseThrow on a @MaybePresent Optional receiver, because each of these methods throws an exception if the
receiver is an absent Optional.

The Optional Checker does not check nullness properties, such as requiring that the argument to of| is non-null
or guaranteeing that the result of .get is non-null. To obtain such a guarantee, run both the Optional Checker and the
Nullness Checker (Chapter 3] page[30).

As with any checker, the guarantee is subject to certain limitations (see Section[2.3).

58

../api/org/checkerframework/checker/optional/qual/PolyPresent.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html#get()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html#orElseThrow(java.util.function.Supplier)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html#of(T)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html#get()

Chapter 6

Interning Checker

If the Interning Checker issues no errors for a given program, then all reference equality tests (i.e., all uses of “==") are
proper; that is, == is not misused where equals () should have been used instead.

Interning is a design pattern in which the same object is used whenever two different objects would be considered
equal. Interning is also known as canonicalization or hash-consing, and it is related to the flyweight design pattern.
Interning has two benefits: it can save memory, and it can speed up testing for equality by permitting use of ==.

The Interning Checker prevents two types of problems in your code. First, it prevents using == on non-interned
values, which can result in subtle bugs. For example:

Integer x new Integer (22);
Integer y = new Integer (22);
System.out.println(x == vy); // prints false!

Second, the Interning Checker helps to prevent performance problems that result from failure to use interning. (See
Section [2.3]for caveats to the checker’s guarantees.)

Interning is such an important design pattern that Java builds it in for these types: String, Boolean, Byte,
Character, Integer, Short. Every string literal in the program is guaranteed to be interned (JLS §3.10.5), and the
String.intern ()| method performs interning for strings that are computed at run time. The valueOf methods in
wrapper classes always (Boolean, Byte) or sometimes (Character, Integer, Short) return an interned result (JLS
§5.1.7). Users can also write their own interning methods for other types.

It is a proper optimization to use ==, rather than equals (), whenever the comparison is guaranteed to produce the
same result — that is, whenever the comparison is never provided with two different objects for which equals () would
return true. Here are three reasons that this property could hold:

1. Interning. A factory method ensures that, globally, no two different interned objects are equals () to one another.
(For some classes, every instance is interned; however, in other cases it is possible for two objects of the class to
be equals () to one another, even if one of them is interned.) Interned objects should always be immutable.

2. Global control flow. The program’s control flow is such that the constructor for class C is called a limited number
of times, and with specific values that ensure the results are not equals () to one another. Objects of class C can
always be compared with ==. Such objects may be mutable or immutable.

3. Local control flow. Even though not all objects of the given type may be compared with ==, the specific objects
that can reach a given comparison may be.

e When searching for an element (say, in a collection), == may be appropriate.
e Some routines return either their argument, or a modified version of it. Your code might compare s ==
s.toLowerCase () to see whether a string contained any upper-case characters.

To eliminate Interning Checker errors, you will need to annotate the declarations of any expression used as an
argument to ==. Thus, the Interning Checker could also have been called the Reference Equality Checker.

To run the Interning Checker, supply the -processor org.checkerframework.checker.interning.InterningChecker
command-line option to javac. For examples, see Section[6.5]

59

https://docs.oracle.com/javase/specs/jls/se17/html/jls-3.html#jls-3.10.5
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#intern()
https://docs.oracle.com/javase/specs/jls/se17/html/jls-5.html#jls-5.1.7
https://docs.oracle.com/javase/specs/jls/se17/html/jls-5.html#jls-5.1.7

4_,_.!llllliiiiﬂ!lllll!__._,

@Interned Object

@InternedDistinct Object @Interned Date

\/

@InternedDistinct Date

Figure 6.1: Type hierarchy for the Interning type system.

6.1 Interning annotations

6.1.1 Interning qualifiers

These qualifiers are part of the Interning type system:

RInterned indicates a type that includes only interned values (no non-interned values).

@InternedDistinct indicates a type such that each value is not equals () to any other Java value. This is a
stronger (more restrictive) property than @Interned, but is a weaker property than writing @Interned on a class
declaration. For details, see Section[6.3.3]

@QUnknownInterned indicates a type whose values might or might not be interned. It is used internally by the type
system and is not written by programmers.

@PolyInterned indicates qualifier polymorphism. For a description of qualifier polymorphism, see Section [30.2]

6.1.2 Interning method and class annotations

QUsesObjectEquals is a class annotation (not a type annotation) that indicates that this class’s equals method is
the same as that of Object. Since Object.equals uses reference equality, this means that for such a class, ==
and equals are equivalent, and so the Interning Checker does not issue errors or warnings for either one.

Two ways to satisfy this annotation are: (1) neither this class nor any of its superclasses overrides the equals
method, or (2) this class defines equals with body return this == o;.

@InternMethod is a method declaration annotation that indicates that this method returns an interned object and
may be invoked on an uninterned object. See Section[6.3.1]for more details.

@EqualsMethod is a method declaration annotation that indicates that this method has a specification like equals ().
The Interning Checker permits use of this == arg within the body.

@CompareToMethod is a method declaration annotation that indicates that this method has a specification like
compareTo (). The Interning Checker permits use of i1f (argl == arg2) { return 0; } within the body.

@FindDistinct! is a formal parameter declaration annotation that indicates that this method uses == to perform
comparisons against the annotated formal parameter. A common reason is that the method searches for the formal
parameter in some data structure, using ==. Any value may be passed to the method.

6.2 Annotating your code with @Interned

In order to perform checking, you must annotate your code with the @Interned type annotation. A type annotated with
@Interned contains the canonical representation of an object:

String sl = ...; // type is (uninterned) "String"
@Interned String s2 = ...; // type is "@Interned String"

The Interning Checker ensures that only interned values can be assigned to s2.

60

../api/org/checkerframework/checker/interning/qual/Interned.html
../api/org/checkerframework/checker/interning/qual/InternedDistinct.html
../api/org/checkerframework/checker/interning/qual/UnknownInterned.html
../api/org/checkerframework/checker/interning/qual/PolyInterned.html
../api/org/checkerframework/checker/interning/qual/UsesObjectEquals.html
../api/org/checkerframework/checker/interning/qual/InternMethod.html
../api/org/checkerframework/checker/interning/qual/EqualsMethod.html
../api/org/checkerframework/checker/interning/qual/CompareToMethod.html
../api/org/checkerframework/checker/interning/qual/FindDistinct.html
../api/org/checkerframework/checker/interning/qual/Interned.html

6.3 Interned classes

An interned annotation on a class declaration indicates that all objects of a type are interned except for newly created
objects. That means that all uses of such types are @Interned by default and the type @UnknownInterned MyClass is
an invalid type.

An exception is constructor results. Constructor results and this within the body of the constructor are @UnknownInterned
by default. Although @UnknownInterned InternClass is not a legal type, no “type.invalid” error is issued at con-
structor declarations. Instead, an “interned.object.creation” error is issued at the invocation of the constructor. The user
should inspect this location and suppress the warning if the newly created object is interned.

For example:

@Interned class InternedClass {
@UnknownInterned InternedClass() {
// error, "this" is @QUnknownInterned.
@Interned InternedClass that = this;

@SuppressWarnings ("intern") // Only creation of an InternedClass object.
static final InternedClass ONE = new InternedClass();

6.3.1 The intern() methods

Some interned classes use an intern () method to look up the interned version of the object. These methods must
be annotated with the declaration annotation @InternMethod. This allows the checker to verify that a newly created
object is immediately interned and therefore not issue an interned object creation error.

new InternedClass().intern() // no error

Because an intern method is expected to be called on uninterned objects, the type of this in intern is implicitly
@UnknownInterned. This will cause an error if this is used someplace where an interned object is expected. Some of
these warnings will be false positives that should be suppressed by the user.

@InternMethod

public InternedClass intern() {
// Type of "this" inside an @InternMethod is @UnknownInterned
@Interned InternedClass that = this; // error

if (!pool.contains(this)) {
@SuppressWarnings ("interning:assignment")
@Interned InternedClass internedThis = this;
pool.add (internedThis);

}

return pool.get (this);

Some interned classes do not use an intern method to ensure that every object of that class is interned. For these
classes, the user will have to manually inspect every constructor invocation and suppress the “interned.object.creation’
error.

If every invocation of a constructor is guaranteed to be interned, then the user should annotate the constructor result
with @Interned and suppress a warning at the constructor.

>

61

@Interned class AnotherInternedClass {
// manually verified that all constructor invocations used such that all
// new objects are interned
@SuppressWarnings ("super.invocation")
@Interned AnotherInternedClass() {}

6.3.2 Default qualifiers and qualifiers for literals

The Interning Checker adds qualifiers to unannotated types, reducing the number of annotations that must appear in

your code (see Section[31.4).
For a complete description of all defaulting rules for interning qualifiers, see the Javadoc for InterningAnnotatedTypeFactory,

6.3.3 InternedDistinct: values not equals() to any other value

The|@InternedDistinct annotation represents values that are not equals () to any other value. Suppose expression e
has type @InternedDistinct. Then e.equals(x) == (e == x). Therefore, it is legal to use == whenever at least
one of the operands has type @InternedDistinct.

@InternedDistinct is stronger (more restrictive) than @Interned. For example, consider these variables:

@Interned String i = "22";
String s = new Integer(22).toString();

The variable i is not @InternedDistinct because i.equals (s) is true.

@InternedDistinct is not as restrictive as stating that all objects of a given Java type are interned.

The @InternedDistinct annotation is rarely used, because it arises from coding paradigms that are tricky to
reason about. One use is on static fields that hold canonical values of a type. Given this declaration:

class MyType {
final static @InternedDistinct MyType SPECIAL = new MyType(...);

}

it would be legal to write myValue == MyType.SPECIAL rather than myValue.equals (MyType.SPECIAL).

The @InternedDistinct is trusted (not verified), because it would be too complex to analyze the equals ()
method to ensure that no other value is equals () to a @InternedDistinct value. You will need to manually verify
that it is only written in locations where its contract is satisfied. For example, here is one set of guidelines that you
could check manually:

e The constructor is private.

o The factory method (whose return type is annotated with @InternedDistinct returns the canonical version for
certain values.

e The class is final, so that subclasses cannot violate these properties.

6.4 What the Interning Checker checks

Objects of an|@Interned type may be safely compared using the “==" operator.
The checker issues an error in two cases:

@y

1. When a reference (in)equality operator (“==" or) has an operand of non-@Interned|type. As a special case,
the operation is permitted if either argument is of|(@InternedDistinct|type
2. When a non-{@Interned type is used where an @ Interned type is expected.

62

../api/org/checkerframework/checker/interning/InterningAnnotatedTypeFactory.html
../api/org/checkerframework/checker/interning/qual/InternedDistinct.html
../api/org/checkerframework/checker/interning/qual/Interned.html
../api/org/checkerframework/checker/interning/qual/Interned.html
../api/org/checkerframework/checker/interning/qual/InternedDistinct.html
../api/org/checkerframework/checker/interning/qual/Interned.html
../api/org/checkerframework/checker/interning/qual/Interned.html

This example shows both sorts of problems:
Date date;

@Interned Date idate;
@InternedDistinct Date ddate;

if (date == idate) ... // error: reference equality test is unsafe

idate = date; // error: idate’s referent might no longer be interned
ddate = idate; // error: idate’s referent might be equals() to some other value

The Interning Checker’s warnings look like

MyFile.java:716: error: [interning:not.interned] attempting to use a non-@Interned comparison operand
if (date == idate)

A

To resolve a not . interned error, you should change the argument that is passed to ==, or use .equals () instead of
==, or suppress the warning.

The checker also issues a warning when .equals is used where == could be safely used. You can disable this
behavior via the javac -Alint=-dotequals command-line option.

For a complete description of all checks performed by the checker, see the Javadoc for InterningVisitor,

To restrict which types the checker should type-check, pass a canonical name (fully-qualified name) using the
-Acheckclass option. For example, to find only the interning errors related to uses of String, you can pass
-Acheckclass=java.lang.String. The Interning Checker always checks all subclasses and superclasses of the
given class.

6.4.1 Imprecision (false positive warnings) of the Interning Checker

The Interning Checker conservatively assumes that the Character, Integer, and Short valueOf methods return a
non-interned value. In fact, these methods sometimes return an interned value and sometimes a non-interned value,
depending on the run-time argument (JLS §5.1.7). If you know that the run-time argument to valueOf implies that
the result is interned, then you will need to suppress an error. (The Interning Checker should make use of the Value
Checker to estimate the upper and lower bounds on char, int, and short values so that it can more precisely determine
whether the result of a given valueOf call is interned.)

6.5 Examples

To try the Interning Checker on a source file that uses the|@Interned qualifier, use the following command:
javac -processor org.checkerframework.checker.interning.InterningChecker docs/examples/InterningExample.java
Compilation will complete without errors or warnings.
To see the checker warn about incorrect usage of annotations, use the following command:
javac -processor org.checkerframework.checker.interning.InterningChecker docs/examples/InterningExampleWithWarnings.java

The compiler will issue an error regarding violation of the semantics of @Interned.

The Daikon invariant detector (http://plse.cs.washington.edu/daikon/) is also annotated with @Interned.
From directory java/, run make check-interning.

The paper “Building and using pluggable type-checkers” [DDET11] (ICSE 2011, https://homes.cs.washington,.
edu/~mernst/pubs/pluggable-checkers-icse2011.pdf) describes case studies in which the Interning Checker
found previously-unknown errors in real software.

63

../api/org/checkerframework/checker/interning/InterningVisitor.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-5.html#jls-5.1.7
../api/org/checkerframework/checker/interning/qual/Interned.html
../api/org/checkerframework/checker/interning/qual/Interned.html
http://plse.cs.washington.edu/daikon/
../api/org/checkerframework/checker/interning/qual/Interned.html
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf

] com.sun.istack.internal. Interned \ = org.checkerframework.checker.interning.qual.Interned

Figure 6.2: Correspondence between other interning annotations and the Checker Framework’s annotations.

6.6 Other interning annotations

The Checker Framework’s interning annotations are similar to annotations used elsewhere.

If your code is already annotated with a different interning annotation, the Checker Framework can type-check your
code. It treats annotations from other tools as if you had written the corresponding annotation from the Interning Checker,
as described in Figure [@ If the other annotation is a declaration annotation, it may be moved; see Section@

64

Chapter 7

Called Methods Checker for the builder
pattern and more

The Called Methods Checker tracks the names of methods that have definitely been called on an object. This checker
is useful for checking any property of the form “call method A before method B”. For the purpose of this checker, a
method has “definitely been called” if it is invoked: a method that might never return or that might throw an exception
has definitely been called on every path after the call, including exceptional paths. The checker also assumes that
the program is free of null-pointer dereferences. You can verify that all pointer dereferences are safe by running the
Nullness Checker (Section [3).

The Called Methods Checker provides built-in support for one such property: that clients of the builder pattern for
object construction always provide all required arguments before calling build (). The builder pattern is a flexible
and readable way to construct objects, but it is error-prone. Failing to provide a required argument causes a run-time
error that manifests during testing or in the field, instead of at compile time as for regular Java constructors. The Called
Methods Checker verifies at compile time that your code correctly uses the builder pattern, never omitting a required
argument. The Called Methods Checker has built-in support for Lombok| (see the caveats about Lombok in Section[/7.2)
and 'AutoValue.

You can verify other builders, or verify other properties of the form “foo () must be called before bar () ”, by
writing method specifications. Section[7.5]describes another example related to a security property.

If the checker issues no warnings, then you have a guarantee that your code supplies all the required information to
the builder. The checker might yield a false positive warning when your code is too tricky for it to verify. Please submit
an issueif you discover this.

7.1 How to run the Called Methods Checker

javac -processor calledmethods MyFile.java ...

javac -processor org.checkerframework.checker.calledmethods.CalledMethodsChecker MyFile.java ...

The Called Methods Checker supports the following optional command-line arguments:

e The -ACalledMethodsChecker_disableBuilderFrameworkSupports option disables automatic annotation
inference for builder frameworks. Section[7.4|describes its syntax. Supply this if you are uninterested in errors in
the use of builders, but are using the Called Methods Checker to detect errors in other types of code.

e The -ACalledMethodsChecker_disableReturnsReceiver option disables the Returns Receiver Checker
(Chapter [23] page[T48)), which ordinarily runs as a subchecker of the Called Methods Checker. If the code being
checked does not use fluent APIs, then you can supply this option and the Called Methods Checker will run much
faster.

e The -ACalledMethodsChecker_useValueChecker option improves precision when analyzing code that uses
the AWS SDK’s DescribeImageRequest API See Section[7.3]

65

https://projectlombok.org/
https://github.com/google/auto/blob/master/value/userguide/index.md
https://github.com/typetools/checker-framework/issues

@CalledMethods({})

N

@CalledMethods("a") @CalledMethods("b")

~ 7

@CalledMethods({"a", "b"})
A

@CalledMethodsBottom

Figure 7.1: The type hierarchy for the Called Methods type system, for an object with two methods: a () and b ().
Types displayed in gray should rarely be written by the programmer.

7.2 For Lombok users

The Called Methods Checker supports projects that use Lombok via the io.freefair.lombok| Gradle plugin automatically.
However, note that the checker’s error messages refer to Lombok’s output, which is a variant of your source code that
appears in a delombok directory. To fix issues, you should edit your original source code, not the files in the checker’s
error messages.

If you use Lombok with a build system other than Gradle, you must configure it to do two tasks. If either of these is
not done, the checker will not issue any errors on Lombok code.

e set Lombok configuration option lombok.addLombokGeneratedAnnotation = true
e delombok the code before passing it to the checker

7.3 Specifying your code

The Called Methods Checker reads method specifications (contracts) that state what a method requires when it is called.
It warns if method arguments do not satisfy the method’s specification.

If you use AutoValue or Lombok, most specifications are automatically inferred by the Called Methods Checker,
from field annotations such as @Nullable and field types such as Optional. Section[7.4] gives defaulting rules for
Lombok and AutoValue.

In some cases, you may need to specify your code. You do so by writing one of the following type annotations

(Figure [7.1):

@CalledMethods|/(String[] methodNames) The annotated type represents values on which all the given
method were definitely called. (Other methods might also have been called.) @CalledMethods (), with no
arguments, is the default annotation.

Suppose that the method build is annotated as

class MyObjectBuilder {
MyObject build(@CalledMethods ({"setX", "setY"}) MyObjectBuilder this) { ... }
}
Then the receiver for any call to build () must have had setX () and setY () called on it.
A typical case for Lombok users for manually writing this annotation is when performing extra builder input

validation. Performing validation can be done through subclassing generated builders and overriding the generated
build () method as follows.

66

https://plugins.gradle.org/plugin/io.freefair.lombok
../api/org/checkerframework/checker/calledmethods/qual/CalledMethods.html

class MyObjectSubBuilder extends MyObjectBuilder {
@Override
MyObject build(@CalledMethods ({"setX", "setY"}) MyObjectSubBuilder this) {
MyObject o = super.build();
if ((o.getX() == null) != (o.get¥() == null)) {
throw new IllegalArgumentException ("Nullness for x and y should be equal");
}

return o;

}
@CalledMethodsPredicate (String expression) The boolean expression specifies the required method
calls. The string is a boolean expression composed of method names, disjunction (| |), conjunction (&&), not (!),
and parentheses.

For example, the annotation @CalledMethodsPredicate ("x && y || z") on atype represents objects such
that either both the x () and y () methods have been called on the object, or the z () method has been called on
the object.

A note on the not operator (!): the annotation @CalledMethodsPredicate ("!m") means “it is not true
m was definitely called”; equivalently “there is some path on which m was not called”. The annotation
@CalledMethodsPredicate ("'!'m") does not mean “m was not called”.
The Called Methods Checker does not have a way of expressing that a method must never be called. You can do
unsound bug-finding for such a property by using the ! operator. The Called Methods Checker will detect if the
method was always called, but will silently approve the code if the method is called on some but not all paths.
@This @This may only be written on a method return type, and means that the method returns its receiver. This is
helpful when type-checking fluent APIs. This annotation is defined by the Returns Receiver Checker (Chapter 23]
page[148), but is particularly useful for the Called Methods Checker because many builders are fluent APIs.
For Lombok users it is important to (manually) add @This to any custom method that calls any other generated
builder method. For instance, in the following example, it is important to annotate setXMod42 () with @This,
since the added method calls setX () (which returns the current builder instance).

class MyObjectBuilder {

@This
MyObjectBuilder setXMod42 (int x) {

return setX(x % 42);

}
}

@CalledMethodsBottom The bottom type for the Called Methods hierarchy. Conceptually, this annotation
means that all possible methods have been called on the object. Programmers should rarely, if ever, need
to write this annotation—write an appropriate @CalledMethods annotation instead. The type of null is
@CalledMethodsBottom.

There are also method annotations:

@EnsuresCalledMethods This declaration annotation specifies a post-condition on a method, indicating the
methods it guarantees to be called.
For example, this specification:

@EnsuresCalledMethods (value = "#1", methods = {"x", "y"})
void m(Param p) { ... }

guarantees that p.x () and p.y () will always be called before m returns. The body of m must satisfy that property,
and clients of m can depend on the property.

Sometimes, you need to provide information to enable the Called Methods Checker to verify the property.
Consider this example:

67

../api/org/checkerframework/checker/calledmethods/qual/CalledMethodsPredicate.html
../api/org/checkerframework/common/returnsreceiver/qual/This.html
../api/org/checkerframework/checker/calledmethods/qual/CalledMethodsBottom.html
../api/org/checkerframework/checker/calledmethods/qual/EnsuresCalledMethods.html

@EnsuresCalledMethods (value="#1", methods="close")

public void closeSocket (Socket sock) throws IOException {
sock.close();
m();

}

If m () might have side-effects (i.e., it is not annotated as @SideEffectFree|or @Pure), then the Called Methods
Checker issues an error because it cannot make any assumptions about the call to m (), and therefore assumes the
worst: that all information it knows about in-scope variables (including that close () was called on sock) is stale
and must be discarded. There are two possible fixes:

e add a @SideEffectFree or @Pure annotation tom (), if m() is in fact side-effect free or pure; or
e re-order the calls to sock.close () andm () so thatthe call to sock.close () appears lastin closeSocket ().

@EnsuresCalledMethodsIf| This declaration annotation specifies a post-condition on a method, indicating the
methods it guarantees to be called if it returns a given result.
For example, this specification:

@EnsuresCalledMethodsIf (expression = "#1", methods = {"x", "y"}, result=true)
boolean m(Param p) { ... }

guarantees that p.x () and p.y () will always be called if m returns t rue. The body of m must satisfy that property,
and clients of m can depend on the property.

@EnsuresCalledMethodsVarArgs| This version of @EnsuresCalledMethods always applies to the varargs
parameter of the annotated method. It has only one argument, which is the list of methods that are guaranteed
to be called on the varargs parameter’s elements before the method returns. This annotation currently cannot
be verified, and a ensuresvarargs.unverified error is always issued when it is used. When annotating a
method as @EnsuresCalledMethodsVarArgs, you should verify that the named methods are actually called on
every element of the varargs parameter via some other method (such as manual inspection) and then suppress the
warning.

@RequiresCalledMethods| This declaration annotation specifies a pre-condition on a method, indicating that
the expressions in its value argument must have called-methods types that include all the methods named in its
methods argument. If the expression is a parameter of the annotated method, you should use an @CalledMethods
annotation on the parameter instead.

7.4 Default handling for Lombok and AutoValue

This section explains how the Called Methods Checker infers types for code that uses the Lombok and AutoValue
frameworks. Most readers can skip these details.

You can disable the builder framework support by specifying them in a comma-separated lowercase list to the
command-line flag disableBuilderFrameworkSupports. For example, to disable both Lombok and AutoValue
support, use:

-ACalledMethodsChecker_disableBuilderFrameworkSupports=autovalue, lombok

The Called Methods Checker automatically assumes default annotations for code that uses builders generated by

Lombok and AutoValue. There are three places annotations are usually assumed:

e A @CalledMethods annotation is placed on the receiver of the build () method, indicating the setter methods
that must be invoked on the builder before calling build (). For Lombok, this annotation’s argument is the set
of @lombok.NonNull fields that do not have default values. For AutoValue, it is the set of fields that are not
@Nullable, Optional, or a Guava Immutable Collection.

e The return type of a toBuilder () method (for example, if the toBuilder = true option is passed to Lombok’s
@Builder annotation) is annotated with the same @CalledMethods annotation as the receiver of build (), using
the same rules as above.

e A @This annotation is placed on the return type of each setter in the builder’s implementation.

68

../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/Pure.html
../api/org/checkerframework/checker/calledmethods/qual/EnsuresCalledMethodsIf.html
../api/org/checkerframework/checker/calledmethods/qual/EnsuresCalledMethodsVarArgs.html
../api/org/checkerframework/checker/calledmethods/qual/RequiresCalledMethods.html

If your program directly defines any of these methods (for example, by adding your own setters to a Lombok
builder), you may need to write the annotations manually.
Minor notes/caveats on these rules:

e Lombok fields annotated with @Singular will be treated as defaulted (i.e., not required), because Lombok will
set them to empty collections if the corresponding setter is not called.

¢ If you manually provide defaults to a Lombok builder (for example, by defining the builder yourself and assigning
a default value to the builder’s field), the checker will treat that field as defaulted most of the time. In particular, it
will not treat it as defaulted if it is defined in bytecode rather than in source code.

7.5 Using the Called Methods Checker for properties unrelated to builders

The Called Methods Checker can be used to verify any property of the form “always call A before B”, even if the
property is unrelated to builders.

For example, consider the AWS EC2 describeImages API, which clients use during the process of initializing
a new cloud instance. |[CVE-2018-15869 describes how an improperly-configured request to this API can make the
requesting client vulnerable to a “machine-image sniping” attack that would allow a malicious third-party to control the
operating system image used to initialize the machine. To prevent this attack, clients must specify some trusted source
for the image by calling the withOwners or withImageIds methods on the request prior to sending it to AWS. Using a
stub file for the describeImages API (Describelmages.astub), the Called Methods Checker can prove that a client is
not vulnerable to such an attack.

To improve precision, you can specify the ~ACalledMethodsChecker_useValueChecker command-line option,
which instructs the checker to treat provably-safe calls to the withFilters method of a DescribeImagesRequest as
equivalent to the withOwners or withImageIds methods.

7.6 More information

The paper “Verifying Object Construction” [KRS™20] (ICSE 2020, https://homes.cs.washington.edu/~mernst/
pubs/object-construction-icse2020-abstract.html) gives more information about the Called Methods Checker,
such as theoretical underpinnings and results of experiments. (The paper uses an earlier name, “Object Construction
Checker”.)

69

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-15869
https://github.com/typetools/checker-framework/blob/master/checker/src/main/java/org/checkerframework/checker/calledmethods/DescribeImages.astub
https://homes.cs.washington.edu/~mernst/pubs/object-construction-icse2020-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/object-construction-icse2020-abstract.html

Chapter 8

Resource Leak Checker for must-call
obligations

The Resource Leak Checker guarantees that the program fulfills every object’s must-call obligations before the object is
de-allocated.

A resource leak occurs when a program does not explicitly dispose of some finite underlying resource, such as a
socket, file descriptor, or database connection. To dispose of the resource, the program should call some method on an
object. (De-allocating or garbage-collecting the object is not sufficient.) For example, the program must call close ()
on every object that implements the interface java.io.Closeable.

The Resource Leak Checker can check any property of the form “the programmer must call each method in a set of
methods M at least once on object O before O is de-allocated”. For resource leaks, by default M is the set containing
close () and O is any object that implements the interface java.io.Closeable. You can extend this guarantee to
other types and methods by writing €MustCall or @InheritableMustCall annotations, as described in Section[27.1]

The Resource Leak Checker works in three stages:

1. The Must Call Checker (Chapter 27] page over-approximates each expression’s must-call methods as a
@MustCallltype.

2. The Called Methods Checker (Chapter [7] page [65) under-approximates each expression’s definitely-called
methods as a/@CalledMethods|type.

3. When any program element goes out of scope (i.e., it is ready to be de-allocated), the Resource Leak Checker
compares the types @MustCall (MC) and @CalledMethods (CM). It reports an error if there exists some method
in MC that is not in CM.

The paper “Lightweight and Modular Resource Leak Verification” [KSSE21]] (ESEC/FSE 2021, https://homes |
cs.washington.edu/~mernst/pubs/resource-leak-esecfse2021l-abstract.html) gives more details about
the Resource Leak Checker.

8.1 How to run the Resource Leak Checker

Run one of these lines:

javac -processor resourceleak MyFile.java ...
javac -processor org.checkerframework.checker.resourceleak.ResourceLeakChecker MyFile.java ...

The Resource Leak Checker supports all the command-line arguments listed in Section [7.1|for the Called Methods
Checker, plus two others:

-ApermitStaticOwning See Section[8.4.1}

70

../api/org/checkerframework/checker/mustcall/qual/MustCall.html
../api/org/checkerframework/checker/calledmethods/qual/CalledMethods.html
https://homes.cs.washington.edu/~mernst/pubs/resource-leak-esecfse2021-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/resource-leak-esecfse2021-abstract.html

-ApermitInitializationLeak See Section[3.8]

If you are running the Resource Leak Checker, then there is no need to run the Must Call Checker (Chapter 27}
page[162), because the Resource Leak Checker does so automatically.

8.2 Resource Leak Checker annotations

The Resource Leak Checker relies on the type qualifiers of two other checkers: the Must Call Checker (Section [27.1))
and the Called Methods Checker (Section[7.3). You might need to write qualifiers from either type hierarchy. The most
common annotations from these checkers that you might need to write are:

@MustCall|/(String[] value) for example on an element with compile-time type Object that might contain a
Socket. See Section 27,11

@InheritableMustCall/(String[] wvalue) on any classes defined in your program that have must-call
obligations. See Section [27.2]

REnsuresCalledMethods| on a method in your code that fulfills a must-call obligation of one of its parameters or
of a field. See Section[Z3l

The Resource Leak Checker supports annotations that express aliasing patterns related to resource leaks:

@Owning

@NotOwning expresses ownership. When two aliases exist to the same Java object, @0wning and @NotOwning
indicate which of the two is responsible for fulfilling must-call obligations. For details, see Section [8.4]

@MustCallAlias! represents a “resource-aliasing” relationship. Resource aliases are distinct Java objects that
control the same resource(s): fulfilling the must-call obligations of one object also fulfills the obligations of the
other object. For details, see Section [8.3]

The Resource Leak Checker also supports an annotation to permit re-assigning fields or re-opening resources:

@CreatesMustCallFor (String value) is adeclaration annotation that indicates that after a call to a method
with this annotation none of the must-call obligations of the in-scope, owning expression listed in value have
been met. In other words, the annotated method “resets” the must-call obligations of the expression. Multiple
@CreatesMustCallFor annotations can be written on the same method. For more details on how to use this
annotation to permit re-assignment of owning fields or the re-opening of resources, see Section 8.6

8.3 Example of how safe resource usage is verified

Consider the following example of safe use of a Socket, in which the comments indicate the inferred Must Call and
Called Methods type qualifiers for s:

{
Socket s = null;
// 1. @MustCall({}) @CalledMethodsBottom
try {
s = new Socket (myHost, myPort);
// 2. @MustCall("close") @CalledMethods ({})
} catch (Exception e) {
// do nothing
} finally {
if (s != null) {
s.close();
// 3. @MustCall("close") @CalledMethods("close")

71

../api/org/checkerframework/checker/mustcall/qual/MustCall.html
../api/org/checkerframework/checker/mustcall/qual/InheritableMustCall.html
../api/org/checkerframework/checker/calledmethods/qual/EnsuresCalledMethods.html
../api/org/checkerframework/checker/mustcall/qual/Owning.html
../api/org/checkerframework/checker/mustcall/qual/NotOwning.html
../api/org/checkerframework/checker/mustcall/qual/MustCallAlias.html
../api/org/checkerframework/checker/mustcall/qual/CreatesMustCallFor.html

} else {

// do nothing

// 4. @MustCall("close") @CalledMethodsBottom
}
// 5. @MustCall("close") @CalledMethods ("close")

}
// 6. @MustCall ("close") @CalledMethods("close™")

At point 1, s’s type qualifiers are the type qualifiers of null: null has no must-call obligations (€MustCall ({})),
and methods cannot be called on it (@CalledMethodsBottom).

At point 2, s is a new Socket object, which has a must-call obligation (@MustCall ("close™")) and has had no
methods called on it (@CalledMethods ({})).

At point 3, close () has definitely been called on s, so s’s Called Methods type is updated. Note that the Must Call
type does not change.

At point 4, s is definitely null and its type is adjusted accordingly.

At point 5, s’s type is the least upper bound of the types at points 3 and 4.

At point 6, s goes out of scope. The Resource Leak Checker reports a required.method.not.called error if the
Must Call set contains any element that the Called Methods set does not.

8.4 Aliased references and ownership transfer

Resource leak checking is complicated by aliasing. Multiple expressions may evaluate to the same Java object, but each
object only needs to be closed once. (Section [8.5]describes a related situation called “resource aliasing”, when multiple
Java objects refer to the same underlying resource.)

For example, consider the following code that safely closes a Socket:

void example (String myHost, int myPort) ({
Socket s = new Socket (myHost, myPort);
closeSocket (s);

}

void closeSocket (@0Owning @MustCall ("close") Socket t) {
t.close();

There are two aliases for a socket object: s in example () and t in closeSocket (). Ordinarily, the Resource
Leak Checker requires that close () is called on every expression of type Socket, but that is not necessary here. The
Resource Leak Checker should not warn when s goes out of scope in example (), because closeSocket () takes
ownership of the socket — that is, closeSocket () takes responsibility for closing it. The @Owning annotation on t’s
declaration expresses this fact; it tells the Resource Leak Checker that t is the reference that must be closed, and its
alias s need not be closed.

Constructor returns are always @0wning. Method returns default to @Owning, and parameters and fields default to
@NotOwning. This treatment of parameter and return types ensures sound handling of unannotated third-party libraries:
any object returned from such a library will be tracked by default, and the checker never assumes that passing an object
to an unannotated library will satisfy its obligations.

@Owning and @NotOwning always transfer must-call obligations: must-call obligations are conserved (i.e., neither
created nor destroyed) by ownership annotations. Writing @0wning or @NotOwning can never make the checker
unsound: a real warning can never be hidden by them. As with any annotation, incorrect or missing annotations can
lead to false positive warnings.

72

8.4.1 Owning fields

Unannotated fields are treated as non-owning.

For final, non-static owning fields, the Resource Leak Checker enforces the “resource acquisition is initialization
(RAII)” programming idiom. Some destructor-like method d () must satisfy the field’s must-call obligation (and
this fact must be expressed via a @EnsuresCalledMethods annotation on d ()), and the enclosing class must have a
@MustCall ("d") obligation to ensure the destructor is called. In addition to the @EnsuresCalledMethods annotation,
which guarantees that the field(s) it references have their must-call obligations satisfied on non-exceptional paths, the
Resource Leak Checker requires those fields to have their must-call obligations satisfied on all paths in (only) the
destructor, and will issue a destructor.exceptional.postcondition error if they are not satisfied. Resolve this
error by ensuring that the required methods are called on all exceptional paths.

Non-final, non-static owning fields usually require one or more @CreatesMustCallFor annotations when they
might be re-assigned. See Section [8.6]for more details on how to annotate a non-final, non-static owning field.

An assignment to a static owning field does not satisfy a must-call obligation; for example,

static @Owning PrintWriter debuglLog = new PrintWriter ("debug.log");

The Resource Leak Checker issues a warning about every assignment of an object with a must-call annotation into a
static owning field, indicating that the obligation of the field’s content might not be satisfied. When those fields are used
throughout execution, until the program exits, there is no good place to dispose of them, so these warnings might not be
useful. The -ApermitStaticOwning command-line argument suppresses warnings related to static owning fields. This
can help in checking legacy code. It permits only a small number of resource retained throughout execution, related to
the number of such fields and assignments to them.

8.5 Resource aliasing

A resource alias set is a set of Java objects that correspond to the same underlying system resource. Calling a must-call
method on any member of a resource-alias set fulfills that obligation for all members of the set. Members of the set may
have different Java types.

Programmers most often encounter resource aliasing when using wrapper types. For example, the Java Buffered-
OutputStream wrapper adds buffering to a delegate stream. The wrapper’s close () method invokes close () on the
delegate. Calling close () on either object has the same effect: it closes the underlying resource.

A resource aliasing relationship is expressed in source code via a pair of @MustCallAlias annotations: one on a
parameter of a method or constructor, and another on its return type. For example, the annotated JDK contains this
constructor of Buf feredOutputStream:

@MustCallAlias BufferedOutputStream(@MustCallAlias OutputStream out);

When a pair of @MustCallAlias annotations is written on a method or constructor m’s return type and its parameter
p, the Resource Leak Checker requires one of the following:

1. p is passed to another method or constructor (including super) in a @MustCallAlias position, and m returns
that method’s result, or
2. pis stored in an @0wning field of the enclosing class.

8.6 Creating obligations (how to re-assign a non-final owning field)

Consider a class that has must-call obligations; that is, the class declaration is annotated with @4ustCall(...). Every
constructor implicitly creates obligations for the newly-created object. Non-constructor methods may also create
obligations when re-assigning non-final owning fields or allocating new system-level resources.

A post-condition annotation, @CreatesMustCallFor, indicates for which expression an obligation is created. If
you write @CreatesMustCallFor (T) on a method N that overrides a method M, then M must also be annotated as
@CreatesMustCallFor (T). (M may also have other @CreatesMustCallFor annotations that N does not.)

73

@CreatesMustCallFor allows the Resource Leak Checker to verify uses of non-final fields that contain a resource,
even if they are re-assigned. Consider the following example:

@MustCall ("close") // default qualifier for uses of SocketContainer
class SocketContainer {
private @Owning Socket sock;

public SocketContainer() { sock = ...; }
void close() { sock.close() };

@CreatesMustCallFor ("this")
void reconnect () {
if (!sock.isClosed()) {
sock.close();
}

sock = ...;

In the lifetime of a SocketContainer object, sock might be re-assigned arbitrarily many times: once at each call
to reconnect (). This code is safe, however: reconnect () ensures that sock is closed before re-assigning it.

Sections and[8.6.2]explain how the Resource Leak Checker verifies uses and declarations of methods annotated
with @CreatesMustCallFor.

8.6.1 Requirements at a call site of a @CreatesMustCallFor method
At a call site to a method annotated as @CreatesMustCallFor (expr), the Resource Leak Checker:

1. Treats any existing @MustCall obligations of expr as satisfied,

2. Creates a fresh obligation to check, as if expr was assigned to a newly-allocated object (i.e. as if expr were a
constructor result).

3. Un-refines the type in the Called Methods Checker’s type hierarchy for expr to @CalledMethods ({}), if it had
any other Called Methods type.

4. Requires that the expression corresponding to expr (that is, expr viewpoint-adapted to the method call site) is
owned; that is, it is annotated or defaulted as @Owning. Otherwise, the checker will issue a reset .not.owning
error at the call-site. You can avoid this error by extracting expr into a new local variable (because locals are
@Owning by default) and replacing all instances of expr in the call with references to the new local variable.

Treating the obligation before the call as satisfied is sound: the checker creates a new obligation for calls
to @CreatesMustCallFor methods, and the Must Call Checker (Chapter [27] page [I62) ensures the @MustCall
type for the target expression will have a superset of any methods present before the call. Intuitively, calling an
@CreatesMustCallFor method “resets” the obligations of the target expression, so whether they were satisfied before
the call or not is irrelevant.

If an @CreatesMustCallFor method n is invoked within a method m that has an @CreatesMustCallFor annota-
tion, and the @CreatesMustCallFor annotations on n and m have the same target expression—imposing the obligation
produced by calling » on the caller of m—then the newly-created obligation is treated as satisfied immediately at the
call-site of n in the body of m (because it is imposed at call-sites of m instead).

8.6.2 Requirements at a declaration of a @CreatesMustCallFor method

Any method that re-assigns a non-final, owning field of some object obj must be annotated @CreatesMustCallFor ("obj").
Other methods may also be annotated with @CreatesMustCallFor.

74

The Resource Leak Checker enforces two rules to ensure that re-assignments to non-final, owning fields (like sock
in method reconnect above) are sound:

e any method that re-assigns a non-final, owning field of an object must be annotated with a @CreatesMustCallFor
annotation whose expression is a reference to that object.

e when a non-final, owning field f is re-assigned at statement s, at the program point before s, f’s must-call
obligations must have been satisfied.

The first rule ensures that close () is called after the last call to reconnect (), and the second rule ensures that
reconnect () safely closes sock before re-assigning it. Because the Called Methods Checker treats calls to an
@CreatesMustCallFor method like reconnect () as if the call might cause arbitrary side-effects, after such a call the
only method known to have been definitely called is the @CreatesMustCallFor method: previous called methods
(including close ()) do not appear in the @CalledMethods type qualifier.

8.7 Ignored exception types

The Resource Leak Checker checks that an element’s must-call obligations are fulfilled when that element may go out
of scope: at the end of its lexical scope or when control may be transferred to the end of its lexical scope, such as via a
break or continue statement or via throwing an exception. As an example of an exception, consider the following
method:

void foo () {
Socket s = ...;
bar () ;
s.close();

If bar is declared to throw an exception, the Resource Leak Checker warns that a Socket may be leaked. If bar
throws an exception, the only reference to s is lost, which could lead to a resource leak.
The Resource Leak Checker ignores control flow due to some exceptions.

e The Resource Leak Checker ignores run-time errors that can occur unpredictably at most points in the program.
For example, the JVM can throw an OutOfMemoryError on any allocation. Similarly, ClassCircularityError,
ClassFormatError, and NoClassDefFoundError may occur at any reference to a class. Such exceptions
usually terminate the program, and in that case unclosed resources do not matter. Accounting for such exceptions
would lead to vast numbers of false positive warnings, so the Resource Leak Checker assumes they are never
thrown. Strictly speaking, this is an unsoundness: it can lead to false negatives (missed resource leaks) if the
programmer catches these exceptions, which is a discouraged practice.

e The Resource Leak Checker also ignores exception types that can be verified to never occur. In particular, the
Resource Leak Checker ignores NullPointerExceptions (use the Nullness Checker, Chapter 3] page[30) and
ArrayIndexOutOfBoundsExceptions and NegativeArraySizeExceptions (use the Index Checker, Chap-
ter[T2] page[96). Other exception types may be added to this list in the future. Please let us know if there is a type
that you think should be ignored by filing an issue listing both the exception type and the verification tool.

8.8 Errors about field initialization

The Resource Leak Checker warns about re-assignments to owning fields, because the value that was overwritten might
not have had its obligations satisfied. Such a warning is not necessary on the first assignment to a field, since the field
had no content before the assignment. Sometimes, the Resource Leak Checker is unable to determine that an assignment
is the first one, so it conservatively assumes the assignment is a re-assignment and issues an error.

One way to prevent this false positive warning is to declare the field as final.

75

Alternately, to suppress all warnings related to field assignments in the constructor and in initializer blocks, pass
the -ApermitInitializationLeak command-line argument. This makes the checker unsound: the Resource Leak
Checker will not warn if the constructor and initializers set a field more than once. The amount of leakage is limited to
how many times the field is set.

76

Chapter 9

Fake Enum Checker for fake enumerations

The Fake Enum Checker, or Fenum Checker, enables you to define a type alias or typedef, in which two different sets
of values have the same representation (the same Java type) but are not allowed to be used interchangeably. It is also
possible to create a typedef using the Subtyping Checker (Chapter 28] page[I63)), and that approach is sometimes more
appropriate.

One common use for the Fake Enum Checker is the fake enumeration pattern (Section[9.6). For example, consider
this code adapted from Android’s IntDef documentation:

@NavigationMode int NAVIGATION_MODE_STANDARD = 0;
@NavigationMode int NAVIGATION_MODE_LIST = 1;
@NavigationMode int NAVIGATION_MODE_TABS = 2;

@NavigationMode int getNavigationMode () ;

void setNavigationMode (@NavigationMode int mode);

The Fake Enum Checker can issue a compile-time warning if the programmer ever tries to call setNavigationMode
with an int that is not a @NavigationMode int.

The Fake Enum Checker gives the same safety guarantees as a true enumeration type or typedef, but retaining
backward-compatibility with interfaces that use existing Java types. You can apply fenum annotations to any Java type,
including all primitive types and also reference types. Thus, you could use it (for example) to represent floating-point
values between 0 and 1, or Strings with some particular characteristic. (Note that the Fake Enum Checker does not let
you create a shorter alias for a long type name, as a real typedef would if Java supported it.)

As explained in Section[9.1] you can either define your own fenum annotations, such as @NavigationMode above,
or you can use the @Fenum type qualifier with a string argument. Figure[9.1|shows part of the type hierarchy for the
Fenum type system.

9.1 Fake enum annotations

The Fake Enum Checker supports two ways to introduce a new fake enum (fenum):

1. Introduce your own specialized fenum annotation with code like this in file MyFenum. java:
package myPackage.qual;

import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

77

https://developer.android.com/reference/android/support/annotation/IntDef
../api/org/checkerframework/checker/fenum/qual/Fenum.html

@FenumTop

A

@Fenum("A") @Fenum("B") D @FenumC @FenumD D @FenumUnqualified

D—— W S———

@FenumBottom

Figure 9.1: Partial type hierarchy for the Fenum type system. There are two forms of fake enumeration annotations —
above, illustrated by @Fenum ("A") and @FenumC. See Section[9.1]for descriptions of how to introduce both types of
fenums. The type qualifiers in gray (@FenumTop, @FenumUnqualified, and @FenumBottom) should never be written in
source code; they are used internally by the type system. @FenumUnqualified is the default qualifier for unannotated
types, except for upper bounds which default to @FenumTop.

import java.lang.annotation.Target;
import org.checkerframework.checker.fenum.qual.FenumTop;
import org.checkerframework.framework.qual.SubtypeOf;

@Documented
@Retention (RetentionPolicy.RUNTIME)
@Target ({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
@SubtypeOf (FenumTop.class)
public @interface MyFenum {}
You only need to adapt the italicized package, annotation, and file names in the example.
Note that all custom annotations must have the @Target ({ElementType.TYPE_USE}) meta-annotation. See
section[33.3.11
2. Use the provided |¢Fenum annotation, which takes a String argument to distinguish different fenums or type
aliases. For example, @Fenum ("A") and @Fenum ("B") are two distinct type qualifiers.

The first approach allows you to define a short, meaningful name suitable for your project, whereas the second
approach allows quick prototyping.

9.2 What the Fenum Checker checks

The Fenum Checker ensures that unrelated types are not mixed. All types with a particular fenum annotation, or
@Fenum(...) with a particular String argument, are disjoint from all unannotated types and from all types with a
different fenum annotation or St ring argument.

The checker ensures that only compatible fenum types are used in comparisons and arithmetic operations (if
applicable to the annotated type).

It is the programmer’s responsibility to ensure that fields with a fenum type are properly initialized before use.
Otherwise, one might observe a null reference or zero value in the field of a fenum type. (The Nullness Checker
(Chapter 3] page can prevent failure to initialize a reference variable.)

9.3 Running the Fenum Checker
The Fenum Checker can be invoked by running the following commands.

e If you define your own annotation(s), provide the name(s) of the annotation(s) through the -Aquals option, using
a comma-no-space-separated notation:

78

../api/org/checkerframework/checker/fenum/qual/Fenum.html

javac -classpath /full/path/to/myProject/bin:/full/path/to/myLibrary/bin \
-processor org.checkerframework.checker.fenum.FenumChecker \
-Aquals=myPackage.qual.MyFenum MyFile.java ...
The annotations listed in ~Aquals must be accessible to the compiler during compilation. Before you run the
Fenum Checker with javac, they must be compiled and on the same path (the classpath or processorpath) as the
Checker Framework. It is not sufficient to supply their source files on the command line.
You can also provide the fully-qualified paths to a set of directories that contain the annotations through the
-AqualDirs option, using a colon-no-space-separated notation. For example, if the Checker Framework is on the
classpath rather than the processorpath:
javac -classpath /full/path/to/myProject/bin:/full/path/to/myLibrary/bin \
-processor org.checkerframework.checker.fenum.FenumChecker \

-AqualDirs=/full/path/to/myProject/bin:/full/path/to/myLibrary/bin MyFile.java ...

Note that in these two examples, the compiled class file of the myPackage.qual.MyFenum annotation must exist
in either the myProject /bin directory or the myLibrary/bin directory. The following placement of the class
file will work with the above commands:
.../myProject/bin/myPackage/qual/MyFenum.class
The two options can be used at the same time to provide groups of annotations from directories, and individually
named annotations.
e If your code uses the (@Fenum annotation, you do not need the -Aquals or -AqualDirs option:

javac -processor org.checkerframework.checker.fenum.FenumChecker MyFile.java ...

For an example of running the Fake Enum Checker on Android code, see https://github.com/karlicoss/
checker-fenum-android-demo.

9.4 Suppressing warnings

One example of when you need to suppress warnings is when you initialize the fenum constants to literal values.
To remove this warning message, add a @SuppressWarnings annotation to either the field or class declaration, for
example:

@SuppressWarnings ("fenum:assignment") // initialization of fake enums
class MyConsts {
public static final @Fenum("A") int ACONST1
public static final @Fenum("A") int ACONST2 2;

1]
—
~.

9.5 Example
The following example introduces two fenums in class TestStatic and then performs a few typical operations.

@SuppressWarnings ("fenum:assignment") // initialization of fake enums
public class TestStatic {

public static final @Fenum("A") int ACONST1 1;

public static final @Fenum("A") int ACONST2 = 2;

public static final @Fenum("B") int BCONST1 = 4;
public static final @Fenum("B") int BCONST2 = 5;

}

class FenumUser {
@Fenum("A") int statel = TestStatic.ACONSTI1; // ok

79

../api/org/checkerframework/checker/fenum/qual/Fenum.html
https://github.com/karlicoss/checker-fenum-android-demo
https://github.com/karlicoss/checker-fenum-android-demo

@Fenum ("B") int state2 = TestStatic.ACONSTI1; // Incompatible fenums forbidden!
void fenumArg(@Fenum("A") int p) {}

void fenumTest () {

statel = 4; // Direct use of value forbidden!
statel = TestStatic.BCONSTI1; // Incompatible fenums forbidden!
statel = TestStatic.ACONST2; // ok

fenumArg (5); // Direct use of value forbidden!

fenumArg (TestStatic.BCONST1) ; // Incompatible fenums forbidden!
fenumArg (TestStatic.ACONST1); // ok

Also, see the example project in the docs/examples/fenum-extension directory.
The paper “Building and using pluggable type-checkers” [DDE™11] (ICSE 2011, https://homes.cs.washington..
edu/~mernst/pubs/pluggable-checkers-icse2011.pdf) describes case studies of the Fake Enum Checker.

9.6 The fake enumeration pattern

Java’s enum keyword lets you define an enumeration type: a finite set of distinct values that are related to one another
but are disjoint from all other types, including other enumerations. Before enums were added to Java, there were two
ways to encode an enumeration, both of which are error-prone:

the fake enum pattern a set of int or String constants (as often found in older C code).
the typesafe enum pattern a class with private constructor.

Sometimes you need to use the fake enum pattern, rather than a real enum or the typesafe enum pattern. One
reason is backward-compatibility. A public API that predates Java’s enum keyword may use int constants; it cannot be
changed, because doing so would break existing clients. For example, Java’s JDK still uses int constants in the AWT
and Swing frameworks, and Android also uses int constants rather than Java enums. Another reason is performance,
especially in environments with limited resources. Use of an int instead of an object can reduce code size, memory
requirements, and run time.

In cases when code has to use the fake enum pattern, the Fake Enum Checker, or Fenum Checker, gives the same
safety guarantees as a true enumeration type. The developer can introduce new types that are distinct from all values of
the base type and from all other fake enums. Fenums can be introduced for primitive types as well as for reference

types.

9.7 References

e Case studies of the Fake Enum Checker:
“Building and using pluggable type-checkers” [DDE™ 11] (ICSE 2011, https://homes.cs.washington.edu/
~mernst/pubs/pluggable-checkers-icse2011.pdf#page=3)

e Java Language Specification on enums:
https://docs.oracle.com/javase/specs/jls/sel7/html/j1ls-8.html#j1s-8.9

e Tutorial trail on enums:
https://docs.oracle.com/javase/tutorial/java/java00/enum.html

e Java Tip 122: Beware of Java typesafe enumerations:
https://www.infoworld.com/article/2077487/java-tip-122--beware-of-java-typesafe-enumerations.
html

80

https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf
https://docs.oracle.com/javase/specs/jls/se17/html/jls-8.html#jls-8.9
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf#page=3
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf#page=3
https://docs.oracle.com/javase/specs/jls/se17/html/jls-8.html#jls-8.9
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://www.infoworld.com/article/2077487/java-tip-122--beware-of-java-typesafe-enumerations.html
https://www.infoworld.com/article/2077487/java-tip-122--beware-of-java-typesafe-enumerations.html

Chapter 10

Tainting Checker

The Tainting Checker prevents certain kinds of trust errors. A fainted, or untrusted, value is one that comes from an
arbitrary, possibly malicious source, such as user input or unvalidated data. In certain parts of your application, using a
tainted value can compromise the application’s integrity, causing it to crash, corrupt data, leak private data, etc.

For example, a user-supplied pointer, handle, or map key should be validated before being dereferenced. As another
example, a user-supplied string should not be concatenated into a SQL query, lest the program be subject to a|[SQL
injection attack. A location in your program where malicious data could do damage is called a sensitive sink.

A program must “sanitize” or “untaint” an untrusted value before using it at a sensitive sink. There are two general
ways to untaint a value: by checking that it is innocuous/legal (e.g., it contains no characters that can be interpreted
as SQL commands when pasted into a string context), or by transforming the value to be legal (e.g., quoting all the
characters that can be interpreted as SQL commands). A correct program must use one of these two techniques so that
tainted values never flow to a sensitive sink. The Tainting Checker ensures that your program does so.

If the Tainting Checker issues no warning for a given program, then no tainted value ever flows to a sensitive sink.
However, your program is not necessarily free from all trust errors. As a simple example, you might have forgotten
to annotate a sensitive sink as requiring an untainted type, or you might have forgotten to annotate untrusted data as
having a tainted type.

To run the Tainting Checker, supply the -processor TaintingChecker or -processor org.checkerframework.checker.taint
command-line option to javac.

10.1 Tainting annotations

The Tainting type system uses the following annotations:

QUntainted indicates a type that includes only untainted (trusted) values.

@Tainted indicates a type that may include tainted (untrusted) or untainted (trusted) values. @Tainted is a supertype
of @Untainted. Itis the default qualifier.

@PolyTainted indicates qualifier polymorphism. For a description of qualifier polymorphism, see Section[30.2]

10.2 Tips on writing @Untainted annotations

Most programs are designed with a boundary that surrounds sensitive computations, separating them from untrusted
values. Outside this boundary, the program may manipulate malicious values, but no malicious values ever pass the
boundary to be operated upon by sensitive computations.

In some programs, the area outside the boundary is very small: values are sanitized as soon as they are received from
an external source. In other programs, the area inside the boundary is very small: values are sanitized only immediately
before being used at a sensitive sink. Either approach can work, so long as every possibly-tainted value is sanitized
before it reaches a sensitive sink.

81

https://en.wikipedia.org/wiki/Sql_injection
https://en.wikipedia.org/wiki/Sql_injection
../api/org/checkerframework/checker/tainting/qual/Untainted.html
../api/org/checkerframework/checker/tainting/qual/Tainted.html
../api/org/checkerframework/checker/tainting/qual/PolyTainted.html

Once you determine the boundary, annotating your program is easy: put @Tainted outside the boundary, @Untainted
inside, and @SuppressWarnings ("tainting") at the validation or sanitization routines that are used at the boundary.

The Tainting Checker’s standard default qualifier is €Tainted (see Section[31.5]for overriding this default). This is
the safest default, and the one that should be used for all code outside the boundary (for example, code that reads user
input). You can set the default qualifier to @Untainted in code that may contain sensitive sinks.

The Tainting Checker does not know the intended semantics of your program, so it cannot warn you if you mis-
annotate a sensitive sink as taking @Tainted data, or if you mis-annotate external data as @Untainted. So long as you
correctly annotate the sensitive sinks and the places that untrusted data is read, the Tainting Checker will ensure that all
your other annotations are correct and that no undesired information flows exist.

As an example, suppose that you wish to prevent SQL injection attacks. You would start by annotating the
Statement|class to indicate that the execute operations may only operate on untainted queries (Chapter [34] describes
how to annotate external libraries):

public boolean execute (@Untainted String sqgl) throws SQLException;
public boolean executeUpdate (€Untainted String sqgl) throws SQLException;

10.3 @Tainted and @Untainted can be used for many purposes

The @Tainted and @Untainted annotations have only minimal built-in semantics. In fact, the Tainting Checker
provides only a small amount of functionality beyond the Subtyping Checker (Chapter[28). This lack of hard-coded
behavior has two consequences. The first consequence is that the annotations can serve many different purposes, such
as:

e Prevent SQL injection attacks: @Tainted is external input, @Untainted has been checked for SQL syntax.

e Prevent cross-site scripting attacks: @Tainted is external input, @Untainted has been checked for JavaScript
syntax.

e Prevent information leakage: @Tainted is secret data, @Untainted may be displayed to a user.

The second consequence is that the Tainting Checker is not useful unless you annotate the appropriate sources,
sinks, and untainting/sanitization routines.

If you want more specialized semantics, or you want to annotate multiple types of tainting (for example, HTML and
SQL) in a single program, then you can copy the definition of the Tainting Checker to create a new annotation and
checker with a more specific name and semantics. You will change the copy to rename the annotations, and you will
annotate libraries and/or your code to identify sources, sinks, and validation/sanitization routines. See Chapter [35]for
more details.

10.4 A caution about polymorphism and side effects

Misuse of polymorphism can lead to unsoundness with the Tainting Checker and other similar information flow checkers.
To understand the potential problem, consider the append function in java.lang.StringBuffer:

public StringBuffer append(StringBuffer this, String toAppend);
Given these declarations:

@Tainted StringBuffer tsb;
@Tainted String ts;
@Untainted StringBuffer usb;
@Untainted String us;

both of these invocations should be legal:

82

https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html

tsb.append(ts);
usb.append(us) ;

That suggests that perhaps the function should be annotated as polymorphic:

// UNSOUND annotation -- do not do this!
public @PolyTainted StringBuffer append(@PolyTainted StringBuffer this, @PolyTainted String toAppend);

The problem with the above annotation is that it permits the undesirable invocation:
usb.append(ts); // illegal invocation

This invocation is permitted because, in the expression, all @PolyTainted annotations on formal parameters are
instantiated to @Tainted, the top annotation, and each argument is a subtype of the corresponding formal parameter.

Beware this problem both in code you write, and also in annotated libraries (such as stub files). The correct way to
annotate this class is to add a class qualifier parameter; see Section [30.3]

(Side note: if append were purely functional (had no side effects and returned a new StringBuffer) the method
call would be acceptable, because the return type is instantiated to @Tainted StringBuffer for the expression
usb.append (ts). However, the append method works via side-effect, and only returns a reference to the buffer as a
convenience for writing “fluent” client code.)

83

Chapter 11

Lock Checker

The Lock Checker prevents certain concurrency errors by enforcing a locking discipline. A locking discipline indicates
which locks must be held when a given operation occurs. You express the locking discipline by declaring a variable’s
type to have the qualifier €GuardedBy|("Iockexpr"). This indicates that the variable’s value may be dereferenced
only if the given lock is held.

To run the Lock Checker, supply the -processor org.checkerframework.checker.lock.LockChecker command-
line option to javac. The -~AconcurrentSemantics command-line option is always enabled for the Lock Checker (see

Section[38.4.5)).

11.1 What the Lock Checker guarantees

The Lock Checker gives the following guarantee. Suppose that expression e has type @GuardedBy|({"x", "y.z"}).
Then the value computed for e is only dereferenced by a thread when the thread holds locks x and y . z. Dereferencing
a value is reading or writing one of its fields. The guarantee about e’s value holds not only if the expression e is
dereferenced directly, but also if the value was first copied into a variable, returned as the result of a method call, etc.
Copying a reference is always permitted by the Lock Checker, regardless of which locks are held.

A lock is held if it has been acquired but not yet released. Java has two types of locks. A monitor lock is acquired
upon entry to a synchronized method or block, and is released on exit from that method or block. An explicit lock
is acquired by a method call such as Lock. lock ()} and is released by another method call such as|Lock.unlock ().
The Lock Checker enforces that any expression whose type implements Lock|is used as an explicit lock, and all other
expressions are used as monitor locks.

Ensuring that your program obeys its locking discipline is an easy and effective way to eliminate a common and
important class of errors. If the Lock Checker issues no warnings, then your program obeys its locking discipline.
However, your program might still have other types of concurrency errors. For example, you might have specified
an inadequate locking discipline because you forgot some @GuardedBy annotations. Your program might release and
re-acquire the lock, when correctness requires it to hold it throughout a computation. And, there are other concurrency
errors that cannot, or should not, be solved with locks.

11.2 Lock annotations
This section describes the lock annotations you can write on types and methods.

11.2.1 Type qualifiers

QGuardedBy/(exprSet) If a variable x has type @GuardedBy ("expr"), then a thread may dereference the value
referred to by x only when the thread holds the lock that expr currently evaluates to.

84

../api/org/checkerframework/checker/lock/qual/GuardedBy.html
../api/org/checkerframework/checker/lock/qual/GuardedBy.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/locks/Lock.html#lock()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/locks/Lock.html#unlock()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/locks/Lock.html
../api/org/checkerframework/checker/lock/qual/GuardedBy.html
../api/org/checkerframework/checker/lock/qual/GuardedBy.html

@GuardedByUnknown
<

\§

@GuardedBy({}) |

@GuardedBy("a")

@NewObject

(@GuardedByBottom,

| @GuardedBy("b") |

@GuardedBy({"a","b"}) | ---

Figure 11.1: The subtyping relationship of the Lock Checker’s qualifiers. @GuardedBy ({}) is the default type qualifier
for unannotated types (except all CLIMB-to-top locations other than upper bounds and exception parameters — see
Section|31.5.3).

The @GuardedBy annotation can list multiple expressions, as in @GuardedBy ({"exprl", "expr2"}), in
which case the dereference is permitted only if the thread holds all the locks.
Section [31.8]explains which expressions the Lock Checker is able to analyze as lock expressions. These include
<self>, the value of the annotated reference (non-primitive) variable. For example, @GuardedBy ("<self>")
Object o indicates that the value referenced by o is guarded by the intrinsic (monitor) lock of the value referenced
by o.
@GuardedBy ({}), which means the value is always allowed to be dereferenced, is the default type qualifier
that is used for all locations where the programmer does not write an explicit locking type qualifier (except all
CLIMB-to-top locations other than upper bounds and exception parameters — see Section[31.5.3). (Section[T1.5.4]
discusses this choice.) It is also the conservative default type qualifier for method parameters in unannotated
libraries (see Chapter [34] page 218).

@GuardedByUnknown If a variable x has type €GuardedByUnknown, then it is not known which locks protect x’s
value. Those locks might even be out of scope (inaccessible) and therefore unable to be written in the annotation.
The practical consequence is that the value referred to by x can never be dereferenced.
Any value can be assigned to a variable of type @GuardedByUnknown. In particular, if it is written on a formal
parameter, then any value, including one whose locks are not currently held, may be passed as an argument.
@GuardedByUnknown is the conservative default type qualifier for method receivers in unannotated libraries (see
Chapter [34] page[2T8).

@NewObiect| This type represents a newly-consructed value; such as the result of calling a constructor or factory
method. The client can use the value as any|@GuardedBy| type.

@GuardedByBottom If a variable x has type @GuardedByBottom, then the value referred to by x is null and can
never be dereferenced.

Figure[TT.T|shows the type hierarchy of these qualifiers. All @GuardedBy annotations are incomparable: if exprSer]
=+ exprSet2, then @GuardedBy (exprSet1) and @GuardedBy (exprSet?2) are siblings in the type hierarchy. You
might expect that @GuardedBy ({"x", "y"}) T is asubtype of @GuardedBy ({"x"}) T. The first type requires two
locks to be held, and the second requires only one lock to be held and so could be used in any situation where both
locks are held. The type system conservatively prohibits this in order to prevent type-checking loopholes that would
result from aliasing and side effects — that is, from having two mutable references, of different types, to the same data.
See Section [IT.4.2]for an example of a problem that would occur if this rule were relaxed.

Polymorphic type qualifiers

@GuardSatisfied(index) If a variable x has type @GuardSatisfied, then all lock expressions for x’s value are
held.
As with other qualifier-polymorphism annotations (Section [30.2)), the index argument indicates when two values
are guarded by the same (unknown) set of locks.
@GuardSatisfied is only allowed in method signatures: on formal parameters (including the receiver) and
return types. It may not be written on fields. Also, it is a limitation of the current design that @GuardSatisfied
may not be written on array elements or on local variables.

85

../api/org/checkerframework/checker/lock/qual/GuardedByUnknown.html
../api/org/checkerframework/checker/lock/qual/NewObject.html
../api/org/checkerframework/checker/lock/qual/GuardedBy.html
../api/org/checkerframework/checker/lock/qual/GuardedByBottom.html
../api/org/checkerframework/checker/lock/qual/GuardSatisfied.html

A return type can only be annotated with €GuardSatisfied(index), not @GuardSatisfied.
See Section [IT.4.6|for an example of a use of @GuardSatisfied.

11.2.2 Declaration annotations

The Lock Checker supports several annotations that specify method behavior. These are declaration annotations, not
type annotations: they apply to the method itself rather than to some particular type.

Method pre-conditions and post-conditions

Q@Holding(String[] locks) All the given lock expressions are held at the method call site.

@EnsuresLockHeld(String[] locks) The given lock expressions are locked upon method return if the method termi-
nates successfully. This is useful for annotating a method that acquires a lock such as ReentrantLock. lock ().

QEnsuresLockHeldIf(String[] locks, boolean result) If the annotated method returns the given boolean value (true
or false), the given lock expressions are locked upon method return if the method terminates successfully. This is
useful for annotating a method that conditionally acquires a lock. See Section [I1.4.4]for examples.

Side effect specifications

@LockingFree The method does not acquire or release locks, directly or indirectly. The method is not
synchronized, it contains no synchronized blocks, it contains no calls to lock or unlock methods, and
it contains no calls to methods that are not themselves @LockingFree.

Since @SideEffectFree implies @LockingFree, if both are applicable then you only need to write
@SideEffectFree.

QReleasesNoLocks' The method maintains a strictly nondecreasing lock hold count on the current thread for
any locks that were held prior to the method call. The method might acquire locks but then release them, or
might acquire locks but not release them (in which case it should also be annotated with @EnsuresLockHeld|or
@EnsuresLockHeldIf).

This is the default for methods being type-checked that have no @LockingFree, @MayReleaseLocks,
@SideEffectFree, or @Pure annotation.

@MayReleaseLocks| The method may release locks that were held prior to the method being called. You can write
this when you are certain the method releases locks, or when you don’t know whether the method releases locks.
This is the conservative default for methods in unannotated libraries (see Chapter [34] page [218).

11.3 Type-checking rules

In addition to the standard subtyping rules enforcing the subtyping relationship described in Figure [[1.1] the Lock
Checker enforces the following additional rules.

11.3.1 Polymorphic qualifiers

@GuardsSatisfied The overall rules for polymorphic qualifiers are given in Section[30.2}
Here are additional constraints for (pseudo-)assignments:

o If the left-hand side has type @GuardSatisfied (with or without an index), then all locks mentioned in the
right-hand side’s @GuardedBy type must be currently held.

o A formal parameter with type qualifier @GuardSatisfied without an index cannot be assigned to.

o If the left-hand side is a formal parameter with type @GuardSatisfied (index), the right-hand-side must
have identical @GuardSatisfied(index) type.

If a formal parameter type is annotated with @GuardSatisfied without an index, then that formal parameter type
is unrelated to every other type in the @GuardedBy hierarchy, including other occurrences of @GuardSatisfied
without an index.

86

../api/org/checkerframework/checker/lock/qual/Holding.html
../api/org/checkerframework/checker/lock/qual/EnsuresLockHeld.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/locks/ReentrantLock.html#lock()
../api/org/checkerframework/checker/lock/qual/EnsuresLockHeldIf.html
../api/org/checkerframework/checker/lock/qual/LockingFree.html
../api/org/checkerframework/checker/lock/qual/ReleasesNoLocks.html
../api/org/checkerframework/checker/lock/qual/EnsuresLockHeld.html
../api/org/checkerframework/checker/lock/qual/EnsuresLockHeldIf.html
../api/org/checkerframework/checker/lock/qual/MayReleaseLocks.html

@GuardSatisfied may not be used on formal parameters, receivers, or return types of a method annotated with
@MayReleaseLocks.

11.3.2 Dereferences

@GuardedBy An expression of type @GuardedBy (eset) may be dereferenced only if all locks in eset are held.

@GuardSatisfied An expression of type @GuardSatisfied may be dereferenced.

Not @GuardedBy or @GuardSatisfied Anexpression whose type is not annotated with @GuardedBy or @GuardSatisfied
may not be dereferenced.

11.3.3 Primitive types, boxed primitive types, and Strings

Primitive types, boxed primitive types (such as java.lang.Integer), and type java.lang.String are annotated
with @GuardedBy ({}). Itis an error for the programmer to annotate any of these types with an annotation from the
@GuardedBy type hierarchy, including @GuardedBy ({}).

11.3.4 Opverriding

Overriding methods annotated with @Holding If class B overrides method m from class A, then the expressions
in B’s @Holding annotation must be a subset of or equal to that of A’s @Holding annotation.

Overriding methods annotated with side effect annotations If class B overrides method m from class A, then the
side effect annotation on B’s declaration of m must be at least as strong as that in A’s declaration of m. From
weakest to strongest, the side effect annotations processed by the Lock Checker are:

@MayReleaselLocks
@ReleasesNoLocks
@LockingFree
@SideEffectFree
@Pure

11.3.5 Side effects

Releasing explicit locks Any method that releases an explicit lock must be annotated with @ayReleaseLocks. The
Lock Checker issues a warning if it encounters a method declaration annotated with @MayReleaseLocks and
having a formal parameter or receiver annotated with @GuardSatisfied. This is because the Lock Checker
cannot guarantee that the guard will be satisfied throughout the body of a method if that method may release a
lock.

No side effects on lock expressions If expression expr is used to acquire a lock, then expr must evaluate to the same
value, starting from when expr is used to acquire a lock until expr is used to release the lock. An expression
is used to acquire a lock if it is the receiver at a call site of a synchronized method, is the expression in a
synchronized block, or is the argument to a 1ock method.

Locks are released after possible side effects After a call to a method annotated with @LockingFree, @ReleasesNoLocks,
@SideEffectFree, or @Pure, the Lock Checker’s estimate of held locks after a method call is the same as that
prior to the method call. After a call to a method annotated with @MayReleaseLocks, the estimate of held
locks is conservatively reset to the empty set, except for those locks specified to be held after the call by an
@EnsuresLockHeld or @EnsuresLockHeldIf annotation on the method. Assignments to variables also cause
the estimate of held locks to be conservatively reduced to a smaller set if the Checker Framework determines that
the assignment might have side-effected a lock expression. For more information on side effects, please refer to
Section

87

11.4 Examples

The Lock Checker guarantees that a value that was computed from an expression of @GuardedBy type is dereferenced
only when the current thread holds all the expressions in the @GuardedBy annotation.

11.4.1 Examples of @GuardedBy

The following example demonstrates the basic type-checking rules.

class MyClass {
final ReentrantLock lock; // Initialized in the constructor

@GuardedBy ("lock") Object x = new Object();

@GuardedBy ("lock") Object y = x; // OK, since dereferences of y will require "lock" to be held.

@QGuardedBy ({}) Object z = x; // ILLEGAL since dereferences of z don’t require "lock" to be held.

@GuardedBy ("lock") Object myMethod() { // myMethod is implicitly annotated with @ReleasesNoLocks.
return x; // OK because the return type is annotated with @GuardedBy ("lock")

void exampleMethod() {
x.toString(); // ILLEGAL because the lock is not known to be held
y.toString(); // ILLEGAL because the lock is not known to be held
myMethod () .toString(); // ILLEGAL because the lock is not known to be held
lock.lock();
x.toString(); // OK: the lock is known to be held
y.toString(); // OK: the lock is known to be held, and toString() is annotated with @SideEffectFree.
myMethod () .toString(); // OK: the lock is known to be held, since myMethod
// is implicitly annotated with @ReleasesNoLocks.

Note that the expression new ObJject () is inferred to have type @GuardedBy ("lock") because it is immediately
assigned to a newly-declared variable having type annotation @GuardedBy ("lock"). You could explicitly write new
@GuardedBy ("lock") Object () but it is not required.

The following example demonstrates that using <self> as a lock expression allows a guarded value to be derefer-
enced even when the original variable name the value was originally assigned to falls out of scope.

class MyClass {
private final @GuardedBy ("<self>") Object x = new Object();
void method() {
x.toString(); // ILLEGAL because x is not known to be held.
synchronized(x) {
x.toString(); // OK: x is known to be held.
}

public @GuardedBy ("<self>") Object get_x() {
return x; // OK, since the return type is @GuardedBy ("<self>").

88

class MyOtherClass {
void method() {
MyClass m = new MyClass();
final @GuardedBy ("<self>") Object o = m.get_x();
o.toString(); // ILLEGAL because o is not known to be held.
synchronized (o) {
o.toString(); // OK: o is known to be held.

11.4.2 @GuardedBy({*‘a”, “b’’}) is not a subtype of @GuardedBy({*a’’})

@GuardedBy(exprSet)
The following example demonstrates the reason the Lock Checker enforces the following rule: if exprSetl #
exprSet2, then @GuardedBy (exprSet1) and QGuardedBy (exprSet2) are siblings in the type hierarchy.

class MyClass {
final Object lockA = new Object();
final Object lockB = new Object();
@GuardedBy ("lockA") Object x = new Object();
@GuardedBy ({"lockA", "lockB"}) Object y = new Object();
void myMethod() {
y = X; // ILLEGAL; if legal, later statement x.toString() would cause trouble
synchronized(lockad) {
x.toString(); // dereferences y’s value without holding lock lockB

}

If the Lock Checker permitted the assignment y = x;, then the undesired dereference would be possible.

11.4.3 Examples of @Holding

The following example shows the interaction between @GuardedBy and @Holding:

void helperl (€GuardedBy ("myLock") Object a) {
a.toString(); // ILLEGAL: the lock is not held
synchronized (myLock) {
a.toString(); // OK: the lock is held

}
@Holding ("myLock")
void helper? (QGuardedBy ("myLock") Object b) {
b.toString(); // OK: the lock is held
}
void helper3 (QGuardedBy ("myLock") Object d) {
d.toString(); // ILLEGAL: the lock is not held
}
void myMethod2 (@GuardedBy ("myLock") Object e) {
helperl(e); // OK to pass to another routine without holding the lock

89

// (but helperl’s body has an error)
e.toString(); // ILLEGAL: the lock is not held
synchronized (myLock) {

helper2(e); // OK: the lock is held
helper3(e); // OK, but helper3’s body has an error

}

11.4.4 Examples of @EnsuresLockHeld and @EnsuresLockHeldIf

@EnsuresLockHeld and @EnsuresLockHeldIf are primarily intended for annotating JDK locking methods, as in:

package java.util.concurrent.locks;
class ReentrantLock {

@EnsuresLockHeld ("this")
public void lock();

@EnsuresLockHeldIf (expression="this", result=true)
public boolean tryLock();

They can also be used to annotate user methods, particularly for higher-level lock constructs such as a Monitor, as
in this simplified example

public class Monitor ({

private final ReentrantLock lock; // Initialized in the constructor

@EnsuresLockHeld ("lock")
public void enter() {
lock.lock();

11.4.5 Example of @LockingFree, @ReleasesNoLocks, and @MayReleaseLocks

@LockingFree is useful when a method does not make any use of synchronization or locks but causes other side
effects (hence @SideEffectFree is not appropriate). @SideEffectFree implies @LockingFree, therefore if both are
applicable, you should only write @SideEffectFree. @ReleasesNoLocks has a weaker guarantee than @LockingFree,
and @MayReleaseLocks provides no guarantees.

private Object myField;

private final ReentrantLock lock; // Initialized in the constructor
private QGuardedBy ("lock") Object x; // Initialized in the constructor

90

// This method does not use locks or synchronization, but it cannot
// be annotated as @SideEffectFree since it alters myField.
@LockingFree
void myMethod () {

myField = new Object();

@SideEffectFree
int mySideEffectFreeMethod() {
return 0;

@MayReleaseLocks
void myUnlockingMethod () {
lock.unlock () ;

@ReleasesNoLocks
void myLockingMethod() {
lock.lock();

@MayReleaseLocks
void clientMethod () {
if (lock.tryLock()) {
x.toString(); // OK: the lock is held
myMethod () ;
x.toString(); // OK: the lock is still held since myMethod is locking-free
mySideEffectFreeMethod() ;
x.toString(); // OK: the lock is still held since mySideEffectFreeMethod is side-effect-free
myUnlockingMethod () ;
x.toString(); // ILLEGAL: myUnlockingMethod may have released a lock
}
if (lock.tryLock()) {
x.toString(); // OK: the lock is held
myLockingMethod () ;
x.toString(); // OK: the lock is held
}
if (lock.isHeldByCurrentThread()) {
x.toString(); // OK: the lock is known to be held
}

11.4.6 Polymorphism and method formal parameters with unknown guards

The polymorphic @GuardSatisfied type annotation allows a method body to dereference the method’s formal
parameters even if the @GuardedBy annotations on the actual parameters are unknown at the method declaration site.
The declaration of StringBuffer.append (String str)|is annotated as:

@LockingFree

91

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/StringBuffer.html#append(java.lang.String)

public @GuardSatisfied(l) StringBuffer append(@GuardSatisfied(l) StringBuffer this,
@GuardSatisfied(2) String str)

The method manipulates the values of its arguments, so all their locks must be held. However, the declaration does
not know what those are and they might not even be in scope at the declaration. Therefore, the declaration cannot
use QGuardedBy and must use @GuardSatisfied. The arguments to @GuardSatisfied indicate that the receiver
and result (which are the same value) are guarded by the same (unknown, possibly empty) set of locks, and the str
parameter may be guarded by a different set of locks.

The @LockingFree annotation indicates that this method makes no use of locks or synchronization.

Given these annotations on append, the following code type-checks:

final ReentrantLock lockl, lock2; // Initialized in the constructor
@GuardedBy ("lockl") StringBuffer filename;
@GuardedBy ("lock2") StringBuffer extension;

lockl.lock();
lock2.lock();
filename = filename.append (extension);

11.5 More locking details

This section gives some details that are helpful for understanding how Java locking and the Lock Checker works.
The paper “Locking discipline inference and checking” [ELM™16] (ICSE 2016, https://homes.cs.washington,
edu/~mernst/pubs/locking-inference-checking-icse201l6-abstract.html) gives additional details.

11.5.1 Two types of locking: monitor locks and explicit locks

Java provides two types of locking: monitor locks and explicit locks.

e A synchronized(E) block acquires the lock on the value of E; similarly, a method declared using the
synchronized method modifier acquires the lock on the method receiver when called. (More precisely, the
current thread locks the monitor associated with the value of E; see JLS §17.1.) The lock is automatically released
when execution exits the block or the method body, respectively. We use the term “monitor lock™ for a lock
acquired using a synchronized block or synchronized method modifier.

e A method call, such as Lock. lock (), acquires a lock that implements the Lock interface. The lock is released
by another method call, such as Lock.unlock (). We use the term “explicit lock™ for a lock expression acquired
in this way.

You should not mix the two varieties of locking, and the Lock Checker enforces this. To prevent an object from
being used both as a monitor and an explicit lock, the Lock Checker issues a warning if a synchronized (E) block’s
expression E has a type that implements Lock.

11.5.2 Held locks and held expressions; aliasing

Whereas Java locking is defined in terms of values, Java programs are written in terms of expressions. We say that a
lock expression is held if the value to which the expression currently evaluates is held.

The Lock Checker conservatively estimates the expressions that are held at each point in a program. The Lock
Checker does not track aliasing (different expressions that evaluate to the same value); it only considers the exact
expression used to acquire a lock to be held. After any statement that might side-effect a held expression or a lock
expression, the Lock Checker conservatively considers the expression to be no longer held.

Section [31.8]explains which Java expressions the Lock Checker is able to analyze as lock expressions.

92

https://homes.cs.washington.edu/~mernst/pubs/locking-inference-checking-icse2016-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/locking-inference-checking-icse2016-abstract.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-17.html#jls-17.1
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/locks/Lock.html#lock()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/locks/Lock.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/locks/Lock.html#unlock()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/locks/Lock.html

The @LockHeld and @LockPossiblyHeld type qualifiers are used internally by the Lock Checker and should never
be written by the programmer. If you see a warning mentioning @LockHeld or @LockPossiblyHeld, please contact
the Checker Framework developers as it is likely to indicate a bug in the Checker Framework.

11.5.3 Run-time checks for locking

When you perform a run-time check for locking, such as if (explicitLock.isHeldByCurrentThread()){...}
or if (Thread.holdsLock (monitorLock)){...}, then the Lock Checker considers the lock expression to be held
within the scope of the test. For more details, see Section

11.5.4 Discussion of default qualifier

The default qualifier for unannotated types is @GuardedBy ({ }) . This default forces you to write explicit @GuardSatisfied
in method signatures in the common case that clients ensure that all locks are held.

It might seem that @GuardSatisfied would be a better default for method signatures, but such a default would
require even more annotations. The reason is that @GuardSatisfied cannot be used on fields. If @GuardedBy ({})
is the default for fields but @GuardSatisfied is the default for parameters and return types, then getters, setters, and
many other types of methods do not type-check without explicit lock qualifiers.

11.5.5 Discussion of @Holding

A programmer might choose to use the @Holding method annotation in two different ways: to specify correctness
constraints for a synchronization protocol, or to summarize intended usage. Both of these approaches are useful, and
the Lock Checker supports both.

Synchronization protocol @Holding can specify a synchronization protocol that is not expressible as locks over the
parameters to a method. For example, a global lock or a lock on a different object might need to be held. By requiring
locks to be held, you can create protocol primitives without giving up the benefits of the annotations and checking of
them.

Method summary that simplifies reasoning @Holding can be a method summary that simplifies reasoning. In this
case, the @Holding doesn’t necessarily introduce a new correctness constraint; the program might be correct even if the
lock were not already acquired.

Rather, here @Holding expresses a fact about execution: when execution reaches this point, the following locks are
known to be already held. This fact enables people and tools to reason intra- rather than inter-procedurally.

In Java, it is always legal to re-acquire a lock that is already held, and the re-acquisition always works. Thus,
whenever you write

@Holding ("myLock")
void myMethod() {

}
it would be equivalent, from the point of view of which locks are held during the body, to write

void myMethod() {
synchronized (myLock) { // no-op: re-acquire a lock that is already held

It is better to write a @Holding annotation rather than writing the extra synchronized block. Here are reasons:

93

net.jcip.annotations.GuardedBy org.checkerframework.checker.lock.qual.GuardedBy (for fields), or
javax.annotation.concurrent.GuardedBy org.checkerframework.checker.lock.qual.Holding (for methods)

Figure 11.2: Correspondence between other lock annotations and the Checker Framework’s annotations.

e The annotation documents the fact that the lock is intended to already be held; that is, the method’s contract
requires that the lock be held when the method is called.

e The Lock Checker enforces that the lock is held when the method is called, rather than masking a programmer
error by silently re-acquiring the lock.

e The version with a synchronized statement can deadlock if, due to a programmer error, the lock is not already
held. The Lock Checker prevents this type of error.

e The annotation has no run-time overhead. The lock re-acquisition consumes time, even if it succeeds.

11.6 Other lock annotations

The Checker Framework’s lock annotations are similar to annotations used elsewhere.

If your code is already annotated with a different lock annotation, the Checker Framework can type-check your
code. It treats annotations from other tools as if you had written the corresponding annotation from the Lock Checker,
as described in Figure If the other annotation is a declaration annotation, it may be moved; see Section

11.6.1 Relationship to annotations in Java Concurrency in Practice

The book Java Concurrency in Practice [GPB™ 06| defines a @GuardedBy| annotation that is the inspiration for ours.
The book’s @GuardedBy serves two related but distinct purposes:

e When applied to a field, it means that the given lock must be held when accessing the field. The lock acquisition
and the field access may occur arbitrarily far in the future.

e When applied to a method, it means that the given lock must be held by the caller at the time that the method is
called — in other words, at the time that execution passes the @GuardedBy annotation.

The Lock Checker renames the method annotation to|@Holding, and it generalizes the @GuardedBy annotation into
a type annotation that can apply not just to a field but to an arbitrary type (including the type of a parameter, return
value, local variable, generic type parameter, etc.). Another important distinction is that the Lock Checker’s annotations
express and enforce a locking discipline over values, just like the JLS expresses Java’s locking semantics; by contrast,
JCIP’s annotations express a locking discipline that protects variable names and does not prevent race conditions. This
makes the annotations more expressive and also more amenable to automated checking. It also accommodates the
distinct meanings of the two annotations, and resolves ambiguity when @GuardedBy is written in a location that might
apply to either the method or the return type.

(The JCIP book gives some rationales for reusing the annotation name for two purposes. One rationale is that
there are fewer annotations to learn. Another rationale is that both variables and methods are “members” that can
be “accessed” and @GuardedBy creates preconditions for doing so. Variables can be accessed by reading or writing
them (putfield, getfield), and methods can be accessed by calling them (invokevirtual, invokeinterface). This informal
intuition is inappropriate for a tool that requires precise semantics.)

11.7 Possible extensions

The Lock Checker validates some uses of locks, but not all. It would be possible to enrich it with additional annotations.
This would increase the programmer annotation burden, but would provide additional guarantees.

Lock ordering: Specify that one lock must be acquired before or after another, or specify a global ordering for all
locks. This would prevent deadlock.

Not-holding: Specify that a method must not be called if any of the listed locks are held.

94

https://jcip.net/
https://jcip.net/annotations/doc/net/jcip/annotations/GuardedBy.html
../api/org/checkerframework/checker/lock/qual/Holding.html
../api/org/checkerframework/checker/lock/qual/GuardedBy.html

These features are supported by Clang’s thread-safety analysis.

95

http://clang.llvm.org/docs/ThreadSafetyAnalysis.html

Chapter 12

Index Checker for sequence bounds (arrays
and strings)

The Index Checker warns about potentially out-of-bounds accesses to sequence data structures, such as arrays and
strings.

The Index Checker prevents IndexOutOfBoundsExceptions that result from an index expression that might be
negative or might be equal to or larger than the sequence’s length. It also prevents NegativeArraySizeExceptions
that result from a negative array dimension in an array creation expression. (A caveat: the Index Checker does not check
for arithmetic overflow. If an expression overflows, the Index Checker might fail to warn about a possible exception.
This is unlikely to be a problem in practice unless you have an array whose length is Integer.MAX_VALUE.)

The programmer can write annotations that indicate which expressions are indices for which sequences. The Index
Checker prohibits any operation that may violate these properties, and the Index Checker takes advantage of these
properties when verifying indexing operations. Typically, a programmer writes few annotations, because the Index
Checker infers properties of indexes from the code around them. For example, it will infer that x is positive within the
then block of an if (x > 0) statement. The programmer does need to write field types and method pre-conditions or
post-conditions. For instance, if a method’s formal parameter is used as an index for myArray, the programmer might
need to write an @IndexFor ("myArray") annotation on the formal parameter’s types.

The Index Checker checks fixed-size data structures, whose size is never changed after creation. A fixed-size data
structure has no add or remove operation. Examples are strings and arrays, and you can add support for other fixed-size
data structures (see Section [12.9).

To run the Index Checker, run either of these commands:

javac —processor index MyJavaFile.java
javac -processor org.checkerframework.checker.index.IndexChecker MyJavaFile. java

Recall that in Java, type annotations are written before the type; in particular, array annotations appear immediately
before “[]”. Here is how to declare a length-9 array of positive integers:

@Positive int @ArrayLen(9) []
Multi-dimensional arrays are similar. Here is how to declare a length-2 array of length-4 arrays:
String @ArraylLen(2) [] @ArrayLen(4) T[]

The paper “Lightweight Verification of Array Indexing” (ISSTA 2018, https://homes.cs.washington.edu/
~mernst/pubs/array-indexing-issta201l8-abstract.html) gives more details about the Index Checker. “En-
forcing correct array indexes with a type system” [Sanl6]] (FSE 2016) describes an earlier version.

96

../api/org/checkerframework/checker/index/qual/IndexFor.html
https://homes.cs.washington.edu/~mernst/pubs/array-indexing-issta2018-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/array-indexing-issta2018-abstract.html

12.1 Index Checker structure and annotations

Internally, the Index Checker computes information about integers that might be indices:

o the lower bound on an integer, such as whether it is known to be positive (Section@])

e the upper bound on an integer, such as whether it is less than the length of a given sequence (Section[12.3)
e whether an integer came from calling the JDK’s binary search routine on an array (Section [[2.6)

e whether an integer came from calling a string search routine (Section [I2.7)

and about sequence lengths:

e the minimum length of a sequence, such “myArray contains at least 3 elements” (Section[12.4)
e whether two sequences have the same length (Section [I2.3)

The Index Checker checks of all these properties at once, but this manual discusses each type system in a different
section. There are some annotations that are shorthand for writing multiple annotations, each from a different type
system:

@IndexFor/(String[] names) The valueisa valid index for the named sequences. For example, the String.charAt (int)
method is declared as

class String {
char charAt (@IndexFor ("this") index) { ... }
}

More generally, a variable declared as @IndexFor ("someArray") int i hastype @IndexFor ("someArray")
int and its run-time value is guaranteed to be non-negative and less than the length of someArray. You could also
express this as @NonNegative| @LTLengthOf|("someArray") int i, but@IndexFor ("someArray") int i
is more concise.

@IndexOrHigh|(String[] names) The value is non-negative and is less than or equal to the length of each
named sequence. This type combines @NonNegativeland |LTEqLengthOf|
For example, the Arrays.fill method is declared as

class Arrays {
void fill(Object[] a, @IndexFor ("#1") int fromIndex, @IndexOrHigh("#1") int toIndex, Object val)
}

QLengthOf|(String[] names) The value is exactly equal to the length of the named sequences. In the imple-
mentation, this type aliases|@IndexOrHigh| so writing it only adds documentation (although future versions of
the Index Checker may use it to improve precision).

@IndexOrLow/(String[] names) The value is -1 or is a valid index for each named sequence. This type
combines |@GTENegativeOne and @LTLengthOfl

@PolyIndex indicates qualifier polymorphism. This type combines @PolyLowerBound and|@PolyUpperBound. For
a description of qualifier polymorphism, see Section [30.2]

@PolyLength) is a special polymorphic qualifier that combines|@PolySameLen and |@PolyValue from the Constant
Value Checker (see Chapter [22] page[T43)). [@PolyLength exists as a shorthand for these two annotations, since
they often appear together.

12.2 Lower bounds

The Index Checker issues an error when a sequence is indexed by an integer that might be negative. The Lower Bound
Checker uses a type system (Figure [I2.T)) with the following qualifiers:

RPositiwvel The value is 1 or greater, so it is not too low to be used as an index. Note that this annotation is trusted
by the Constant Value Checker, so if the Constant Value Checker is run on code containing this annotation, the
Lower Bound Checker must be run on the same code in order to guarantee soundness.

97

../api/org/checkerframework/checker/index/qual/IndexFor.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#charAt(int)
../api/org/checkerframework/checker/index/qual/NonNegative.html
../api/org/checkerframework/checker/index/qual/LTLengthOf.html
../api/org/checkerframework/checker/index/qual/IndexOrHigh.html
../api/org/checkerframework/checker/index/qual/NonNegative.html
../api/org/checkerframework/checker/index/qual/LTEqLengthOf.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Arrays.html#fill(java.lang.Object%5B%5D,int,int,java.lang.Object)
../api/org/checkerframework/checker/index/qual/LengthOf.html
../api/org/checkerframework/checker/index/qual/IndexOrHigh.html
../api/org/checkerframework/checker/index/qual/IndexOrLow.html
../api/org/checkerframework/checker/index/qual/GTENegativeOne.html
../api/org/checkerframework/checker/index/qual/LTLengthOf.html
../api/org/checkerframework/checker/index/qual/PolyIndex.html
../api/org/checkerframework/checker/index/qual/PolyLowerBound.html
../api/org/checkerframework/checker/index/qual/PolyUpperBound.html
../api/org/checkerframework/checker/index/qual/PolyLength.html
../api/org/checkerframework/checker/index/qual/PolySameLen.html
../api/org/checkerframework/common/value/qual/PolyValue.html
../api/org/checkerframework/checker/index/qual/PolyLength.html
../api/org/checkerframework/checker/index/qual/Positive.html

@UpperBoundUnknown

A

@LTEqLengthOf ("myArray")

@LowerBoundUnknown‘
T A

’ @GTENegativeOne ‘ @LTLengthOf("myArray")
) X
@LTOMLengthOf ("myArray")

£

@LowerBoundBottom ‘ @UpperBoundBOttom

Figure 12.1: The two type hierarchies for integer types used by the Index Checker. On the left is a type system for
lower bounds. On the right is a type system for upper bounds. Qualifiers written in gray should never be written in
source code; they are used internally by the type system.

In the Upper Bound type system, subtyping rules depend on both the array name ("myArray", in the figure) and on the
offset (which is 0, the default, in the figure). Another qualifier is|@UpperBoundLiteral, whose subtyping relationships
depend on its argument and on offsets for other qualifiers.

@NonNegative| The value is O or greater, so it is not too low to be used as an index.

QGTENegativeOne The value is -1 or greater. It may not be used as an index for a sequence, because it might be
too low. (“GTE” stands for “Greater Than or Equal to”.)

@PolyLowerBound indicates qualifier polymorphism. For a description of qualifier polymorphism, see Section[30.2}

@LowerBoundUnknown! There is no information about the value. It may not be used as an index for a sequence,
because it might be too low.

@LowerBoundBottom The value cannot take on any integral types. The bottom type, which should not need to be
written by the programmer.

12.3 Upper bounds

The Index Checker issues an error when a sequence index might be too high. To do this, it maintains information
about which expressions are safe indices for which sequences. The length of a sequence is arr.length for arrays and
str.length () for strings. It uses a type system (Figure[I2.I)) with the following qualifiers:

It issues an error when a sequence arr is indexed by an integer that is not of type @LTLengthOf ("arr") or
@LTOMLengthOf ("arr").

QLTLengthOf|/(String[] names, String[] offset) An expression with this type has value less than the
length of each sequence listed in names. The expression may be used as an index into any of those sequences, if
it is non-negative. For example, an expression of type @LTLengthOf ("a") int might be used as an index to a.
The type @LTLengthOf ({"a", "b"}) is a subtype of both @LTLengthOf ("a") and @LTLengthOf ("b"). (“LT”
stands for “Less Than”.)
@LTLengthOf takes an optional offset element, meaning that the annotated expression plus the offset is less
than the length of the given sequence. For example, suppose expression e has type @LTLengthOf (value =

98

../api/org/checkerframework/checker/index/qual/UpperBoundLiteral.html
../api/org/checkerframework/checker/index/qual/NonNegative.html
../api/org/checkerframework/checker/index/qual/GTENegativeOne.html
../api/org/checkerframework/checker/index/qual/PolyLowerBound.html
../api/org/checkerframework/checker/index/qual/LowerBoundUnknown.html
../api/org/checkerframework/checker/index/qual/LowerBoundBottom.html
../api/org/checkerframework/checker/index/qual/LTLengthOf.html

{"a", "b"}, offset = {"-1", "x"}). Thene - 1lislessthana.length,ande + xislessthanb.length.

This helps to make the checker more precise. Programmers rarely need to write the offset element.
QLTEgLengthOf (String[] names) An expression with this type has value less than or equal to the length of

each sequence listed in names. It may not be used as an index for these sequences, because it might be too high.

@LTEqLengthOf ({"a", "b"}) is asubtype of both @LTEqLengthOf ("a") and @LTEqLengthOf ("b"). (“LTEQ”

stands for “Less Than or Equal to”.)

@LTEqLengthOf ({"a"}) = QLTLengthOf (value={"a"}, offset=-1), and

@LTEgLengthOf (value={"a"}, offset=x) = @LTLengthOf (value={"a"}, offset=x-1) for any X.
QLTOMLengthOf (String[] names) An expression with this type has value at least 2 less than the length of

each sequence listed in names. It may always used as an index for a sequence listed in names, if it is non-negative.

This type exists to allow the checker to infer the safety of loops of the form:

for (int 1 = 0; 1 < array.length - 1; ++i) {
arr[i] = arr[i+l];

}

This annotation should rarely (if ever) be written by the programmer; usually @LTLengthOf|(String[] names)
should be written instead. QLTOMLengthOf ({"a", "b"}) is a subtype of both @LTOMLengthOf ("a") and
@LTOMLengthOf ("b"). (“LTOM” stands for “Less Than One Minus”, because another way of saying “at least 2
less than a.length” is “less than a.length-1".)
@LTOMLengthOf ({"a"}) = QLTLengthOf (value={"a"}, offset=1), and
@LTOMLengthOf (value={"a"}, offset=x) = @LTLengthOf (value={"a"}, offset=x+1) for any X.
QUpperBoundLiteral repesents a constant value, typically a literal written in source code. Its subtyping rela-
tionship is: @UpperBoundLiteral (1it) <: LTLengthOf (value="myArray", offset=off) if lit+offset
<-1.
@PolyUpperBound indicates qualifier polymorphism. For a description of qualifier polymorphism, see Section[30.2]
QUpperBoundUnknown| There is no information about the upper bound on the value of an expression with this type.
It may not be used as an index for a sequence, because it might be too high. This type is the top type, and should
never need to be written by the programmer.
QUpperBoundBottom This is the bottom type for the upper bound type system. It should never need to be written
by the programmer.

The following method annotations can be used to establish a method postcondition that ensures that a certain
expression is a valid index for a sequence:

@EnsuresLTLengthOf (String[] wvalue, String[] targetValue, String[] offset) Whenthe
method with this annotation returns, the expression (or all the expressions) given in the value element is less than
the length of the given sequences with the given offsets. More precisely, the expression has the @LTLengthOf
qualifier with the value and offset arguments taken from the targetValue and offset elements of this
annotation.
@EnsuresLTLengthOfIf (String[] expression, boolean result, String[] targetValue, String[] o:
If the method with this annotation returns the given boolean value, then the given expression (or all the given
expressions) is less than the length of the given sequences with the given offsets.

There is one declaration annotation that indicates the relationship between two sequences:

@HasSubsequence (String[] value, String[] from, String[] to) indicates that a subsequence
(from from to to) of the annotated sequence is equal to some other sequence, named by value).
For example, to indicate that shorter is a subsequence of longer:

int startIndex;

int endIndex;

int[] shorter;

@HasSubsequence (value="shorter", from="this.start", to="this.end")
int[] longer;

99

../api/org/checkerframework/checker/index/qual/LTEqLengthOf.html
../api/org/checkerframework/checker/index/qual/LTOMLengthOf.html
../api/org/checkerframework/checker/index/qual/LTLengthOf.html
../api/org/checkerframework/checker/index/qual/UpperBoundLiteral.html
../api/org/checkerframework/checker/index/qual/PolyUpperBound.html
../api/org/checkerframework/checker/index/qual/UpperBoundUnknown.html
../api/org/checkerframework/checker/index/qual/UpperBoundBottom.html
../api/org/checkerframework/checker/index/qual/EnsuresLTLengthOf.html
../api/org/checkerframework/checker/index/qual/EnsuresLTLengthOfIf.html
../api/org/checkerframework/checker/index/qual/HasSubsequence.html

Thus, a valid index into shorter is also a valid index (between start and end-1 inclusive) into longer. More
generally, if x is @IndexFor ("shorter™") in the example above, then start + x is @IndexFor ("longer").
If y is @IndexFor ("longer") and @LessThan ("end"), theny - start is @IndexFor ("shorter"). Finally,
end - startis @IndexOrHigh ("shorter").

This annotation is in part checked and in part trusted. When an array is assigned to longer, three facts are
checked: that start is non-negative, that start is less than or equal to end, and that end is less than or equal to
the length of longer. This ensures that the indices are valid. The programmer must manually verify that the
value of shorter equals the subsequence that they describe.

12.4 Sequence minimum lengths

The Index Checker estimates, for each sequence expression, how long its value might be at run time by computing
a minimum length that the sequence is guaranteed to have. This enables the Index Checker to verify indices that are
compile-time constants. For example, this code:

String getThirdElement (String[] arr) {
return arr(2];

}
is legal if arr has at least three elements, which can be indicated in this way:

String getThirdElement (String @MinLen(3) [] arr) {
return arr[2];

When the index is not a compile-time constant, as in arr [1], then the Index Checker depends not on a @MinLen
annotation but on i being annotated as|@LTLengthOf ("arr").

The MinLen type qualifier is implemented in practice by the Constant Value Checker, using @ArrayLenRange
annotations (see Chapter [22] page[I43). This means that errors related to the minimum lengths of arrays must be
suppressed using the "value" argument to @SuppressWarnings. |@ArrayLenRange and @ArrayLen|annotations can
also be used to establish the minimum length of a sequence, if a more precise estimate of length is known. For example,
if arr is known to have exactly three elements:

String getThirdElement (String @ArrayLen(3) [] arr) {
return arr[2];

The following type qualifiers (from Chapter 22] page[T43) can establish the minimum length of a sequence:

@MinLen(int wvalue) The value of an expression of this type is a sequence with at least value elements. The
default annotation is @MinLen (0), and it may be applied to non-sequences. @MinLen (x) is a subtype of
@MinLen (x—1). An @MinLen annotation is treated internally as an @ArrayLenRange with only its from field
filled.

QArrayLen|(int[] value) The value of an expression of this type is a sequence whose length is exactly one of
the integers listed in its argument. The argument can contain at most ten integers; larger collections of integers
are converted to €ArrayLenRange|annotations. The minimum length of a sequence with this annotation is the
smallest element of the argument.

QArrayLenRange/(int from, int to) The value of an expression of this type is a sequence whose length
is bounded by its arguments, inclusive. The minimum length of a sequence with this annotation is its from
argument.

The following method annotation can be used to establish a method postcondition that ensures that a certain
sequence has a minimum length:

100

../api/org/checkerframework/checker/index/qual/LTLengthOf.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html
../api/org/checkerframework/common/value/qual/ArrayLen.html
../api/org/checkerframework/common/value/qual/MinLen.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html
../api/org/checkerframework/common/value/qual/ArrayLen.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html

@SameLenUnknown

N

@SameLen("a") @SameLen("b")

el

@SameLen({"a", "b"})
A

@SamelLenBottom

Figure 12.2: The type hierarchy for arrays of equal length ("a" and "b" are assumed to be in-scope sequences). Qualifiers
written in gray should never be written in source code; they are used internally by the type system.

@EnsuresMinLenIf (String[] expression, boolean result, int targetValue) Ifthe method
with this annotation returns the given boolean value, then the given expression (or all the given expressions) is a
sequence with at least targetValue elements.

12.5 Sequences of the same length

The Index Checker determines whether two or more sequences have the same length. This enables it to verify that all
the indexing operations are safe in code like the following:

boolean lessThan (double[] arrl, double @SameLen ("#1") [] arr2) {
for (int 1 = 0; 1 < arrl.length; i++) {
if (arrl[i] < arr2[i]) {
return true;
} else if (arrl[i] > arr2[i]) {
return false;

}

return false;

}

When needed, you can specify which sequences have the same length using the following type qualifiers (Fig-

ure[12:2):

@SameLen/(String[] names) An expression with this type represents a sequence that has the same length as the
other sequences named in names. In general, @SameLen types that have non-intersecting sets of names are not
subtypes of each other. However, if at least one sequence is named by both types, the types are actually the same,
because all the named sequences must have the same length.

@PolySameLen indicates qualifier polymorphism. For a description of qualifier polymorphism, see Section[30.2]

@SameLenUnknown| No information is known about which other sequences have the same length as this one. This is
the top type, and programmers should never need to write it.

@SameLenBottom This is the bottom type, and programmers should rarely need to write it. null has this type.

101

../api/org/checkerframework/common/value/qual/EnsuresMinLenIf.html
../api/org/checkerframework/checker/index/qual/SameLen.html
../api/org/checkerframework/checker/index/qual/PolySameLen.html
../api/org/checkerframework/checker/index/qual/SameLenUnknown.html
../api/org/checkerframework/checker/index/qual/SameLenBottom.html

@SearchIndexUnknown

i

@SearchIndex("a")

TN

@SearchIndex({"a", "b})‘ ‘@NegativeIndexFor("a")

~_

@NegativeIndexFor({"a", "b"})

t

@SearchIndexBottom

Figure 12.3: The type hierarchy for the Index Checker’s internal type system that captures information about the results
of calls to Arrays.binarySearch.

12.6 Binary search indices

The JDK’s Arrays.binarySearch method returns either where the value was found, or a negative value indicating
where the value could be inserted. The Search Index Checker represents this concept.
The Search Index Checker’s type hierarchy (Figure [I2.3) has four type qualifiers:

@SearchIndexFor/(String[] names) An expression with this type represents an integer that could have been
produced by calling Arrays.binarySearch: for each array a specified in the annotation, the annotated integer
is between -a.length-1 and a.length-1, inclusive

@NegativeIndexFor (String[] names) An expression with this type represents a “negative index” that is
between a.length-1 and -1, inclusive; that is, a value that is both a @SearchIndex and is negative. Applying
the bitwise complement operator (~) to an expression of this type produces an expression of type @ IndexOrHigh.

@SearchIndexBottom This is the bottom type, and programmers should rarely need to write it.

@RSearchIndexUnknown No information is known about whether this integer is a search index. This is the top type,
and programmers should rarely need to write it.

12.7 Substring indices

The methods String.indexOf and|String.lastIndexOf return an index of a given substring within a given string,
or -1 if no such substring exists. The index i returned from receiver.indexOf (substring) satisfies the following
property, which is stated here in three equivalent ways:

i == -1 1| (1>0 && 1 <= receiver.length() - substring.length())
i == -1 || (@NonNegative && Q@QLTLengthOf (value="receiver", offset="substring.length()-1"))
@SubstringIndexFor (value="receiver", offset="substring.length()-1")

The return type of methods|String.indexOf and|String.lastIndexOf has the annotation @SubstringIndexFor|(
value="this", offset="#1.length()-1")). This allows writing code such as the following with no warnings
from the Index Checker:

102

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Arrays.html#binarySearch(java.lang.Object%5B%5D,java.lang.Object)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Arrays.html#binarySearch(java.lang.Object%5B%5D,java.lang.Object)
../api/org/checkerframework/checker/index/qual/SearchIndexFor.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Arrays.html#binarySearch(java.lang.Object%5B%5D,java.lang.Object)
../api/org/checkerframework/checker/index/qual/NegativeIndexFor.html
../api/org/checkerframework/checker/index/qual/IndexOrHigh.html
../api/org/checkerframework/checker/index/qual/SearchIndexBottom.html
../api/org/checkerframework/checker/index/qual/SearchIndexUnknown.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#indexOf(java.lang.String)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#lastIndexOf(java.lang.String)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#indexOf(java.lang.String)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#lastIndexOf(java.lang.String)
../api/org/checkerframework/checker/index/qual/SubstringIndexFor.html

@SubstringIndexUnknown

A

@SubstringIndexFor (value="myStr", offset="subStr.length()-1")
)

@SubstringIndexBottom

Figure 12.4: The type hierarchy for the Substring Index Checker, which captures information about the results of calls
to/String.indexOf and |String.lastIndexOf.

public static String removeSubstring(String original, String removed) {
int 1 = original.indexOf (removed);
if (1 != -1) {
return original.substring(0, i) + original.substring(i + removed.length());
}

return original;

The @SubstringIndexFor annotation is implemented in a Substring Index Checker that runs together with the
Index Checker and has its own type hierarchy (Figure [T2.4) with three type qualifiers:

@SubstringIndexFor/(String[] value, String[] offset) An expression with this type represents
an integer that could have been produced by calling String.indexOf: the annotated integer is either -1, or it is
non-negative and is less than or equal to receiver.length - offset (where the sequence receiver and the
offset offset are corresponding elements of the annotation’s arguments).

@SubstringIndexBottom This is the bottom type, and programmers should rarely need to write it.

@SubstringIndexUnknown| No information is known about whether this integer is a substring index. This is the
top type, and programmers should rarely need to write it.

12.7.1 The need for the @SubstringIndexFor annotation

No other annotation supported by the Index Checker precisely represents the possible return values of methods
String.indexOf|and|String.lastIndexOf, The reason is the methods’ special cases for empty strings and for failed
matches.

Consider the result i of receiver.indexOf (substring):

e 1is @GTENegativeOne, because i >= -1.
e 1is @LTEgLengthOf ("receiver"), because i <= receiver.length().

e iisnot@IndexOrLow ("receiver"), because for receiver = "", substring = "", i = 0, the property i
>= -1 §& 1 < receiver.length () does not hold.
e iisnot @IndexOrHigh("receiver"), because for receiver = "", substring = "b", i = -1, the prop-

ertyi >= 0 && i <= receiver.length() does not hold.

iisnot @LTLengthOf (value = "receiver", offset = "substring.length()-1"
= "", substring = i = -1,theproperty i + substring.length() - 1
does not hold.

because for receiver

)?
n < receiver.length()

abc",

The last annotation in the list above, @LTLengthOf (value = "receiver", offset = "substring.length()-1"),
is the correct and precise upper bound for all values of i except -1. The offset expresses the fact that we can add
substring.length () to this index and still get a valid index for receiver. That is useful for type-checking code that

103

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#indexOf(java.lang.String)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#lastIndexOf(java.lang.String)
../api/org/checkerframework/checker/index/qual/SubstringIndexFor.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#indexOf(java.lang.String)
../api/org/checkerframework/checker/index/qual/SubstringIndexBottom.html
../api/org/checkerframework/checker/index/qual/SubstringIndexUnknown.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#indexOf(java.lang.String)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#lastIndexOf(java.lang.String)

adds the length of the substring to the found index, in order to obtain the rest of the string. However, the upper bound
applies only after the index is explicitly checked not to be -1:

int 1 = receiver.indexOf (substring);
// 1 1s @GTENegativeOne and @LTEgLengthOf ("receiver")
// 1 is not QLTLengthOf (value = "receiver", offset = "substring.length()-1")
if (1 != -1) {
// i is @NonNegative and @LTLengthOf (value = "receiver", offset = "substring.length()-1")
int j = 1 + substring.length();
// 3 1s @IndexOrHigh ("receiver")
return receiver.substring(j); // this call is safe

The property of the result of indexOf cannot be expressed by any combination of lower-bound (Section[12.2)) and
upper-bound (Section [T2.3)) annotations, because the upper-bound annotations apply independently of the lower-bound
annotations, but in this case, the upper bound i <= receiver.length() - substring.length() holds only if i
>= 0. Therefore, to express this property and make the example type-check without false positives, a new annotation
such as @SubstringIndexFor (value = "receiver", offset = "substring.length()-1") is necessary.

12.8 Inequalities
The Index Checker estimates which expression’s values are less than other expressions’ values.

QLessThan|(String[] values) An expression with this type has a value that is less than the value of each
expression listed in values. The expressions in values must be composed of final or effectively final variables
and constants.

@QLessThanUnknown There is no information about the value of an expression this type relative to other expressions.
This is the top type, and should not be written by the programmer.

QLessThanBottom This is the bottom type for the less than type system. It should never need to be written by the
programmer.

12.9 Annotating fixed-size data structures

The Index Checker has built-in support for Strings and arrays. You can add support for additional fixed-size data
structures by writing annotations. This allows the Index Checker to typecheck the data structure’s implementation and
to typecheck uses of the class.

This section gives an example: a fixed-length collection.

/** ArrayWrapper is a fixed-size generic collection. */
public class ArrayWrapper<T> {
private final Object @SameLen("this") [] delegate;

@SuppressWarnings ("index") // constructor creates object of size @SamelLen (this) by definition

ArrayWrapper (@NonNegative int size) {
delegate = new Object[size];

public @LengthOf ("this") int size() {
return delegate.length;

104

../api/org/checkerframework/checker/index/qual/LessThan.html
../api/org/checkerframework/checker/index/qual/LessThanUnknown.html
../api/org/checkerframework/checker/index/qual/LessThanBottom.html

public void set (@IndexFor ("this") int index, T obj) {
delegate[index] = obj;

@SuppressWarnings ("unchecked") // required for normal Java compilation due to unchecked cast
public T get (@IndexFor ("this") int index) {
return (T) delegate[index];

The Index Checker treats methods annotated with @LengthOf ("this") as the length of a sequence like arr. length
for arrays and str.length () for strings.

With these annotations, client code like the following typechecks with no warnings:

public static void clearIndexl (ArrayWrapper<? extends Object> a, @IndexFor ("#1") int i) {
a.set (i, null);

public static void clearIndex2 (ArrayWrapper<? extends Object> a, int i) {
if (0 <=1 && 1 < a.size()) {
a.set (i, null);

105

Chapter 13

Regex Checker for regular expression
syntax

The Regex Checker prevents, at compile-time, use of syntactically invalid regular expressions and access of invalid
capturing groups.

A regular expression, or regex, is a pattern for matching certain strings of text. In Java, a programmer writes a
regular expression as a string. The syntax of regular expressions is complex, so it is easy to make a mistake. It is also
easy to accidentally use a regex feature from another language that is not supported by Java (see section “Comparison
to Perl 5” in the Pattern Javadoc). These problems cause run-time errors.

Regular expressions in Java also have capturing groups, which are delimited by parentheses and allow for
extraction from text. If a programmer uses an incorrect index (larger than the number of capturing groups), an
IndexOutOfBoundsException is thrown.

The Regex Checker warns about these problems at compile time, guaranteeing that your program does not crash
due to incorrect use of regular expressions.

For further details, including case studies, see the paper “A type system for regular expressions” [SDE12] (FT{JP
2012, https://homes.cs.washington.edu/~mernst/pubs/regex-types—-ftfijp2012-abstract.html).

To run the Regex Checker, supply the -processor org.checkerframework.checker.regex.RegexChecker
command-line option to javac.

13.1 Regex annotations
These qualifiers make up the Regex type system:

@QRegex/ indicates that the run-time value is a valid regular expression St ring. If the optional parameter is supplied to
the qualifier, then the number of capturing groups in the regular expression is at least that many. If not provided,
the parameter defaults to 0. For example, if an expression’s type is @Regex (1) String, then its run-time value
could be "colo(u?)r" or " (brown|beige)" but not "colou?r" nor a non-regex string such as "1) first
point".

@PolyRegex indicates qualifier polymorphism. For a description of qualifier polymorphism, see Section[30.2]

The subtyping hierarchy of the Regex Checker’s qualifiers is shown in Figure[I3.1]

106

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
https://homes.cs.washington.edu/~mernst/pubs/regex-types-ftfjp2012-abstract.html
../api/org/checkerframework/checker/regex/qual/Regex.html
../api/org/checkerframework/checker/regex/qual/PolyRegex.html

@UnknownRegex

1

@Regex(0) = @Regex

1

@Regex (1)

1

@Regex(2)

f
i

@RegexBottom

Figure 13.1: The subtyping relationship of the Regex Checker’s qualifiers. The type qualifiers are applicable to
CharSequence and its subtypes. Because the parameter to a @Regex qualifier is at least the number of capturing groups
in a regular expression, a @Regex qualifier with more capturing groups is a subtype of a @Regex qualifier with fewer
capturing groups. Qualifiers in gray are used internally by the type system but should never be written by a programmer.

13.2 Annotating your code with @Regex

13.2.1 Implicit qualifiers

The Regex Checker adds implicit qualifiers, reducing the number of annotations that must appear in your code (see
Section[31.4). If a String literal is a valid regex, the checker implicitly adds the @Regex qualifier with the argument
set to the correct number of capturing groups. The Regex Checker allows the null literal to be assigned to any type
qualified with the Regex qualifier.

13.2.2 Capturing groups

The Regex Checker validates that a legal capturing group number is passed to Matcher|s group, start and end
methods. To do this, the type of Matcher must be qualified with a @Regex annotation with the number of capturing
groups in the regular expression. This is handled implicitly by the Regex Checker for local variables (see Section [31.7),
but you may need to add @Regex annotations with a capturing group count to Pattern and Matcher fields and
parameters.

13.2.3 Concatenation of partial regular expressions

In general, concatenating a non-regular-expression String with any other string yields a non-regular-expression
String. The Regex Checker can sometimes determine that concatenation of non-regular-expression Strings will produce
valid regular expression Strings. For an example see Figure [13.2]

107

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Matcher.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Matcher.html#group(int)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Matcher.html#start(int)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Matcher.html#end(int)

public @Regex String parenthesize (@Regex String regex) {
return " (" + regex + ")"; // Even though the parentheses are not @Regex Strings,
// the whole expression is a @Regex String

Figure 13.2: An example of the Regex Checker’s support for concatenation of non-regular-expression Strings to produce
valid regular expression Strings.

String regex = getRegexFromUser ();
if (! RegexUtil.isRegex(regex)) {

throw new RuntimeException("Error parsing regex " + regex, RegexUtil.regexException(regex));
}

Pattern p = Pattern.compile (regex);

Figure 13.3: Example use of RegexUtil methods.

13.2.4 Testing whether a string is a regular expression

Sometimes, the Regex Checker cannot infer whether a particular expression is a regular expression — and sometimes
your code cannot either! In these cases, you can use the isRegex method to perform such a test, and other helper
methods to provide useful error messages. A common use is for user-provided regular expressions (such as ones passed
on the command-line). Figure[I3.3|gives an example of the intended use of the RegexUt il methods.

RegexUtil.isRegex returns true if its argument is a valid regular expression.

RegexUtil.regexError returns a String error message if its argument is not a valid regular expression, or null
if its argument is a valid regular expression.

RegexUtil.regexException returns the PatternSyntaxException|thatPattern.compile (String)|throws
when compiling an invalid regular expression. It returns null if its argument is a valid regular expression.

An additional version of each of these methods is also provided that takes an additional group count param-
eter. The RegexUtil.isRegex method verifies that the argument has at least the given number of groups. The
RegexUtil.regexError|and RegexUtil.regexException methods return a String error message and Pattern-
SyntaxException, respectively, detailing why the given String is not a syntactically valid regular expression with at
least the given number of capturing groups.

If you detect that a String is not a valid regular expression but would like to report the error higher
up the call stack (potentially where you can provide a more detailed error message) you can throw a
RegexUtil.CheckedPatternSyntaxException. This exception is functionally the same as a PatternSyntax+
Exception except it is checked to guarantee that the error will be handled up the call stack. For more details, see the
Javadoc for RegexUtil.CheckedPatternSyntaxException.

To use the RegexUtil class, the checker-util. jar file must be on the classpath at run time.

13.2.5 Suppressing warnings

If you are positive that a particular string that is being used as a regular expression is syntactically valid, but the Regex
Checker cannot conclude this and issues a warning about possible use of an invalid regular expression, then you can use
the RegexUtil.asRegex method to suppress the warning.

You can think of this method as a cast: it returns its argument unchanged, but with the type @Regex Stringifitis
a valid regular expression. It throws an error if its argument is not a valid regular expression, but you should only use it
when you are sure it will not throw an error.

There is an additional RegexUt il .asRegex method that takes a capturing group parameter. This method works the
same as described above, but returns a @Regex String with the parameter on the annotation set to the value of the
capturing group parameter passed to the method.

The use case shown in Figure[T3.3]should support most cases so the asRegex method should be used rarely.

108

../api/org/checkerframework/checker/regex/util/RegexUtil.html#isRegex-java.lang.String-
../api/org/checkerframework/checker/regex/util/RegexUtil.html#regexError-java.lang.String-
../api/org/checkerframework/checker/regex/util/RegexUtil.html#regexException-java.lang.String-
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/PatternSyntaxException.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html#compile(java.lang.String)
../api/org/checkerframework/checker/regex/util/RegexUtil.html#isRegex-java.lang.String-int-
../api/org/checkerframework/checker/regex/util/RegexUtil.html#regexError-java.lang.String-int-
../api/org/checkerframework/checker/regex/util/RegexUtil.html#regexException-java.lang.String-int-
../api/org/checkerframework/checker/regex/util/RegexUtil.CheckedPatternSyntaxException.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/PatternSyntaxException.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/PatternSyntaxException.html
../api/org/checkerframework/checker/regex/util/RegexUtil.CheckedPatternSyntaxException.html
../api/org/checkerframework/checker/regex/util/RegexUtil.html#asRegex-java.lang.String-
../api/org/checkerframework/checker/regex/util/RegexUtil.html#asRegex-java.lang.String-int-

Chapter 14

Format String Checker

The Format String Checker prevents use of incorrect format strings in format methods such as |System.out.printf
and String.formatl

The Format String Checker warns you if you write an invalid format string, and it warns you if the other arguments
are not consistent with the format string (in number of arguments or in their types). Here are examples of errors that the
Format String Checker detects at compile time. Section [I4.3] provides more details.

String.format ("sy", 7); // error: invalid format string

String.format ("%d", "a string"); // error: invalid argument type for %d

String.format ("%d %s", 7); // error: missing argument for %s

String.format ("%d", 7, 3); // warning: unused argument 3

String.format ("{0}", 7); // warning: unused argument 7, because {0} is wrong syntax

To run the Format String Checker, supply the -processor org.checkerframework.checker.formatter.FormatterChecker
command-line option to javac.

The paper “A type system for format strings” [WKSE14]] (ISSTA 2014, https://homes.cs.washington.edu/
~mernst/pubs/format-string-issta20l4-abstract.html) gives more details about the Format String Checker
and the Internationalization Format String Checker (Chapter|[I3] page [T16));

14.1 Formatting terminology

Printf-style formatting takes as an argument a format string and a list of arguments. It produces a new string in which
each format specifier has been replaced by the corresponding argument. The format specifier determines how the format
argument is converted to a string. A format specifier is introduced by a % character. For example, String.format ("The
%$s is %d.","answer",42) yields "The answer is 42.". "The %s is %d." is the format string, "$s" and "%d"
are the format specifiers; "answer" and 42 are format arguments.

14.2 Format String Checker annotations

The (@Format| qualifier on a string type indicates a valid format stringl A programmer rarely writes the @Format
annotation, as it is inferred for string literals. A programmer may need to write it on fields and on method signatures.

The @Format qualifier is parameterized with a list of conversion categories that impose restrictions on the format
arguments. Conversion categories are explained in more detail in Section[I4.2.1] The type qualifier for "$d $£" is for
example @Format ({INT, FLOAT}).

109

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/io/PrintStream.html#printf(java.lang.String,java.lang.Object...)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#format(java.lang.String,java.lang.Object...)
https://homes.cs.washington.edu/~mernst/pubs/format-string-issta2014-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/format-string-issta2014-abstract.html
../api/org/checkerframework/checker/formatter/qual/Format.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Formatter.html#syntax
../api/org/checkerframework/checker/formatter/qual/Format.html

Y

@Format(...,) @InvalidFormat

\ N

Figure 14.1: The Format String Checker type qualifier hierarchy. The type qualifiers are applicable to CharSequence
and its subtypes. The figure does not show the subtyping rules among different @Format (...) qualifiers; see

Section[14.2.2

Consider the below printFloatAndInt method. Its parameter must be a format string that can be used in a format
method, where the first format argument is “float-like” and the second format argument is “integer-like”. The type of its
parameter, @Format ({FLOAT, INT}) String, expresses that contract.

void printFloatAndInt (@Format ({FLOAT, INT}) String fs) {
System.out.printf (fs, 3.1415, 42);

printFloatAndInt ("Float %f, Number %d"); // OK
printFloatAndInt ("Float %f"); // error

Figure [14.1|shows all the type qualifiers. The annotations other than @Format are only used internally and cannot
be written in your code. @InvalidFormat|indicates an invalid format string — that is, a string that cannot be used
as a format string. For example, the type of "$y" is @InvalidFormat String. |@FormatBottom is the type of the
null literal. |@UnknownFormat|is the default that is applied to strings that are not literals and on which the user has not
written a @Format annotation.

There is also a @FormatMethod annotation; see Section|14.

14.2.1 Conversion Categories

Given a format specifier, only certain format arguments are compatible with it, depending on its “conversion” — its last,
or last two, characters. For example, in the format specifier "$d", the conversion d restricts the corresponding format
argument to be “integer-like”:

String.format ("%d", 5); // OK
String.format ("%d", "hello"); // error

Many conversions enforce the same restrictions. A set of restrictions is represented as a conversion category. The
“integer like” restriction is for example the conversion category INT. The following conversion categories are defined in
the ConversionCategory enumeration:

GENERAL|imposes no restrictions on a format argument’s type. Applicable for conversions b, B, h, H, s, S.

CHAR requires that a format argument represents a Unicode character. Specifically, char, Character, byte, Byte,
short, and Short are allowed. int or Integer are allowed if Character.isValidCodePoint (argument)
would return true for the format argument. (The Format String Checker permits any int or Integer without
issuing a warning or error — see Section|[14.3.2]) Applicable for conversions c, C.

INT|requires that a format argument represents an integral type. Specifically, byte, Byte, short, Short, int and
Integer, long, Long, and BigInteger are allowed. Applicable for conversions d, o, x, X.

FLOAT requires that a format argument represents a floating-point type. Specifically, float, Float, double, Double,
and BigDecimal are allowed. Surprisingly, integer values are not allowed. Applicable for conversions e, E, f, g,
G, a, A.

110

../api/org/checkerframework/checker/formatter/qual/InvalidFormat.html
../api/org/checkerframework/checker/formatter/qual/FormatBottom.html
../api/org/checkerframework/checker/formatter/qual/UnknownFormat.html
../api/org/checkerframework/checker/formatter/qual/FormatMethod.html
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#INT
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#GENERAL
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#CHAR
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#INT
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#FLOAT

TIME requires that a format argument represents a date or time. Specifically, long, Long, Calendar, and Date are
allowed. Applicable for conversions t, T.

UNUSED imposes no restrictions on a format argument. This is the case if a format argument is not used as replacement
for any format specifier. "25s" for example ignores the first format argument.

All conversion categories accept null. Furthermore, null is always a legal argument array, because it is treated as
supplying null to each format specifer. For example, String.format ("$d $f %s", (Object[]) null) evaluates
to "null null null".

The same format argument may serve as a replacement for multiple format specifiers. Until now, we have assumed
that the format specifiers simply consume format arguments left to right. But there are two other ways for a format
specifier to select a format argument:

e n$ specifies a one-based index n. In the format string "2s", the format specifier selects the second format
argument.

e The < flag references the format argument that was used by the previous format specifier. In the format string "%
$<d" for example, both format specifiers select the first format argument.

In the following example, the format argument must be compatible with both conversion categories, and can therefore
be neither a Character nor a long.

format ("Char $%$1Sc, Int %1$d", (int)42); // OK
format ("Char %1Sc, Int %1$d", new Character(42)); // error
format ("Char %$1Sc, Int %$15d", (long)42); // error

Only three additional conversion categories are needed represent all possible intersections of previously-mentioned
conversion categories:

NULL is used if no object of any type can be passed as parameter. In this case, the only legal value is null. For
example, the format string "1f $1S$c" requires that the first format argument be null. Passing either 4 or 4.2
would lead to an exception.

CHAR_AND_INT]is used if a format argument is restricted by a/CHAR and a INT|conversion category (CHAR N INT).

INT_AND_TIME| is used if a format argument is restricted by an INT and a|TIME|conversion category (INT N TIME).

All other intersections lead to already existing conversion categories. For example, GENERAL M CHAR = CHAR and
UNUSED M GENERAL = GENERAL.
Figure|14.2{summarizes the subset relationship among all conversion categories.

14.2.2 Subtyping rules for @Format
Here are the subtyping rules among different @Format|qualifiers. It is legal to:

e use a format string with a weaker (less restrictive) conversion category than required.
e use a format string with fewer format specifiers than required. Although this is legal a warning is issued because
most occurrences of this are due to programmer error.

The following example shows the subtyping rules in action:

@Format ({FLOAT, INT}) String £f;

£ = "3f %d"; // OK

f = "%s %d"; // OK, %$s is weaker than %f

f = "s$f"; // warning: last argument is ignored
f = "$f %d %s"; // error: too many arguments

f = "%d %d"; // error: %d is not weaker than %f

String.format (f, 0.8, 42);

111

../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#TIME
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#UNUSED
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#NULL
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#CHAR_AND_INT
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#CHAR
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#INT
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#INT_AND_TIME
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#INT
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#TIME
../api/org/checkerframework/checker/formatter/qual/Format.html

UNUSED

A

GENERAL

_—r ¥

AN

CHAR

INT

TIME

FLOAT

AN

AN

Pad

CHAR_AND_INT

INT_AND_TIME

+

NULL

Figure 14.2: The subset relationship among conversion categories.

14.3 What the Format String Checker checks

If the Format String Checker issues no errors, it provides the following guarantees:

1. The following guarantees hold for every format method invocation:

(a) The format method’s first parameter (or second if a Locale|is provided) is a valid format string (or null).
(b) A warning is issued if one of the format string’s conversion categories is UNUSED.
(c) None of the format string’s conversion categories is NULL.

2. If the format arguments are passed to the format method as varargs, the Format String Checker guarantees the
following additional properties:

(a) No fewer format arguments are passed than required by the format string.
(b) A warning is issued if more format arguments are passed than required by the format string.
(c) Every format argument’s type satisfies its conversion category’s restrictions.

3. If the format arguments are passed to the format method as an array, a warning is issued by the Format String
Checker.

Following are examples for every guarantee:

"%

String.format ("%c", (String)null); // error (2c)
String.format ("1d %1Sf", new Object[]{l}); // warning (3)
String.format ("$s", new Object[]{"hello"}); // warning (3)

String.format ("%d", 42); // OK
String.format (Locale.GERMAN, "%d", 42); // OK
String.format (new Object()); // error (la)
String.format ("%y"); // error (la)
String.format ("%2s", "unused", "used"); // warning (1b)
String.format ("%1$d %1Sf", 5.5); // error (lc)
String.format ("%$1sd 1f %d", null, 6); // error (lc)
String.format ("%s"); // error (2a)
String.format ("%s", "used", "ignored"); // warning (2b)
String.format ("%c",4.2); // error (2c)

(

(

(

112

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Locale.html

14.3.1 Possible false alarms

There are three cases in which the Format String Checker may issue a warning or error, even though the code cannot
fail at run time. (These are in addition to the general conservatism of a type system: code may be correct because of
application invariants that are not captured by the type system.) In each of these cases, you can rewrite the code, or you
can manually check it and write a @SuppressWarnings annotation if you can reason that the code is correct.

Case[Ib} Unused format arguments. It is legal to provide more arguments than are required by the format string;
Java ignores the extras. However, this is an uncommon case. In practice, a mismatch between the number of format
specifiers and the number of format arguments is usually an error.

Case[Ic} Format arguments that can only be null. It is legal to write a format string that permits only null arguments
and throws an exception for any other argument. An example is String.format ("1d %1£f", null). The Format
String Checker forbids such a format string. If you should ever need such a format string, simply replace the problematic
format specifier with "null". For example, you would replace the call above by String.format ("null null").

Case [3} Array format arguments. The Format String Checker performs no analysis of arrays, only of varargs
invocations. It is better style to use varargs when possible.

14.3.2 Possible missed alarms

The Format String Checker helps prevent bugs by detecting, at compile time, which invocations of format methods will
fail. While the Format String Checker finds most of these invocations, there are cases in which a format method call
will fail even though the Format String Checker issued neither errors nor warnings. These cases are:

The format string is null. Use the Nullness Checker to prevent this.

A format argument’s toString method throws an exception.

A format argument implements the Formattable interface and throws an exception in the formatTo method.
A format argument’s conversion category is CHAR or CHAR_AND_INT, and the passed value is an int or Integer,
and Character.isValidCodePoint (argument) returns false.

el NS

The following examples illustrate these limitations:

class A {
public String toString() {
throw new Error();

class B implements Formattable {
public void formatTo (Formatter fmt, int f,
int width, int precision) {
throw new Error();

// The checker issues no errors or warnings for the

// following illegal invocations of format methods.

String.format (null); // NullPointerException (1)
String.format ("%s", new A()); // Error (2)

String.format ("%s", new B()); // Error (3)

String.format ("%c", (int)-1); // IllegalFormatCodePointException (4)

113

14.4 Implicit qualifiers

The Format String Checker adds implicit qualifiers, reducing the number of annotations that must appear in your code
(see Section [31.4). The checker implicitly adds the @Format qualifier with the appropriate conversion categories to any
String literal that is a valid format string.

14.5 @FormatMethod

Your project may contain methods that forward their arguments to a format method. Consider for example the following
log method:

@FormatMethod
void log(String format, Object... args) {
if (enabled) {
logfile.print (indent_str);
logfile.printf (format , args);

You should annotate such a method with the @FormatMethod annotation, which indicates that the St ring argument
is a format string for the remaining arguments.

14.6 Testing whether a format string is valid

The Format String Checker automatically determines whether each St ring literal is a valid format string or not. When
a string is computed or is obtained from an external resource, then the string must be trusted or tested.

One way to test a string is to call the FormatUtil.asFormat method to check whether the format string is valid
and its format specifiers match certain conversion categories. If this is not the case, asFormat raises an exception. Your
code should catch this exception and handle it gracefully.

The following code examples may fail at run time, and therefore they do not type check. The type-checking errors
are indicated by comments.

Scanner s = new Scanner (System.in);
String fs = s.next();
System.out.printf (fs, "hello", 1337); // error: fs is not known to be a format string

Scanner s = new Scanner (System.in);
@Format ({GENERAL, INT}) String fs = s.next(); // error: fs is not known to have the given type
System.out.printf(fs, "hello", 1337); // OK

The following variant does not throw a run-time error, and therefore passes the type-checker:

Scanner s = new Scanner (System.in);

String format = s.next ()

try {
format = FormatUtil.asFormat (format, GENERAL, INT);

} catch (IllegalFormatException e) {
// Replace this by your own error handling.
System.err.println("The user entered the following invalid format string: " + format);
System.exit (2);

}

// fs is now known to be of type: QFormat ({GENERAL, INT}) String

System.out.printf (format, "hello", 1337);

114

../api/org/checkerframework/checker/formatter/qual/FormatMethod.html
../api/org/checkerframework/checker/formatter/util/FormatUtil.html#asFormat-java.lang.String-org.checkerframework.checker.formatter.qual.ConversionCategory...-

To use the FormatUtil|class, the checker—util. jar file must be on the classpath at run time.

115

../api/org/checkerframework/checker/formatter/util/FormatUtil.html

Chapter 15

Internationalization Format String Checker
(I18n Format String Checker)

The Internationalization Format String Checker, or I18n Format String Checker, prevents use of incorrect i18n format
strings.

If the I118n Format String Checker issues no warnings or errors, then MessageFormat . format| will raise no error at
run time. “I18n” is short for “internationalization” because there are 18 characters between the “i” and the “n”.

Here are the examples of errors that the I118n Format Checker detects at compile time.

// Warning: the second argument is missing.
MessageFormat.format ("{0} {1}", 3.1415);

// String argument cannot be formatted as Time type.
MessageFormat.format ("{0, time}", "my string");

// Invalid format string: unknown format type: thyme.
MessageFormat.format ("{0, thyme}", new Date());

// Invalid format string: missing the right brace.
MessageFormat.format ("{0", new Date());

// Invalid format string: the argument index is not an integer.
MessageFormat.format ("{0.2, time}", new Date());

// Invalid format string: "#.#.#" subformat is invalid.
MessageFormat.format ("{0, number, #.#.#}", 3.1415);

For instructions on how to run the Internationalization Format String Checker, see Section[15.6]
The Internationalization Checker or I18n Checker (Chapter[16.2] page[I23) has a different purpose. It verifies that
your code is properly internationalized: any user-visible text should be obtained from a localization resource and all

keys exist in that resource.
The paper “A type system for format strings” [WKSE14] (ISSTA 2014, https://homes.cs.washington.edu/
~mernst/pubs/format-string-issta201l4-abstract.html) gives more details about the Internationalization For-

mat String Checker and the Format String Checker (Chapter [14] page [T09);

15.1 Internationalization Format String Checker annotations

The MessageFormat| documentation specifies the syntax of the i18n format string.
These are the qualifiers that make up the I18n Format String type system. Figure [I5.1] shows their subtyping
relationships.

@I18nFormat| represents a valid i18n format string. For example, @I18nFormat ({GENERAL, NUMBER, UNUSED,
DATE}) is alegal type for "{0} {1, number} {3, date}", indicating that when the format string is used, the

116

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/text/MessageFormat.html#format(java.lang.String,java.lang.Object...)
https://homes.cs.washington.edu/~mernst/pubs/format-string-issta2014-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/format-string-issta2014-abstract.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/text/MessageFormat.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nFormat.html

@I18nUnknownFormat

\

@I18nFormat(...,) ‘ @I18nInvalidFormat @I18nFormatFor("#1") | - - - | @I18nFormatFor ("#n")

A

@I18nFormatBottom

Figure 15.1: The Internationalization Format String Checker type qualifier hierarchy. The type qualifiers are applicable
to CharSequence and its subtypes. The figure does not show the subtyping rules among different @I18nFormat|(. . .)
qualifiers; see Section All|@I18nFormatFor|annotations are unrelated by subtyping, unless they are identical.
The qualifiers in gray are used internally by the checker and should never be written by a programmer.

first argument should be of GENERAL conversion category, the second argument should be of NUMBER conversion
category, and so on. Conversion categories such as GENERAL are described in Section[15.2]

@QIl8nFormatFor indicates that the qualified type is a valid i18n format string for use with some array of values.
For example, @I18nFormatFor ("#2") indicates that the string can be used to format the contents of the second
parameter array. The argument is a Java expression whose syntax is explained in Section[31.8] An example of its
use is:

static void method(@Il8nFormatFor ("#2") String format, Object... args) {
// the body may use the parameters like this:
MessageFormat.format (format, args);

method ("{0, number} {1}", 3.1415, "A string"); // OK
// error: The string "hello" cannot be formatted as a Number.
method ("{0, number} {1}", "hello", "goodbye");

@I18nInvalidFormat! represents an invalid i18n format string. Programmers are not allowed to write this
annotation. It is only used internally by the type checker.

@I18nUnknownFormat| represents any string. The string might or might not be a valid i118n format string. Program-
mers are not allowed to write this annotation.

@I18nFormatBottom indicates that the value is definitely null. Programmers are not allowed to write this
annotation.

15.2 Conversion categories

In a message string, the optional second element within the curly braces is called a format type and must be one of
number, date, time, and choice. These four format types correspond to different conversion categories. date and
time correspond to DATE in the conversion categories figure. choice corresponds to NUMBER. The format type
restricts what arguments are legal. For example, a date argument is not compatible with the number format type, i.e.,
MessageFormat.format ("{0, number}", new Date()) will throw an exception.

The 118n Checker represents the possible arguments via conversion categories. A conversion category defines a set
of restrictions or a subtyping rule.

Figure[I5.2] summarizes the subset relationship among all conversion categories.

15.3 Subtyping rules for @I18nFormat
Here are the subtyping rules among different @I18nFormat qualifiers. It is legal to:

e use a format string with a weaker (less restrictive) conversion category than required.

117

../api/org/checkerframework/checker/i18nformatter/qual/I18nFormat.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nFormatFor.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nFormatFor.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nInvalidFormat.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nUnknownFormat.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nFormatBottom.html

UNUSED

A

GENERAL

A

DATE

A

NUMBER

Figure 15.2: The subset relationship among i18n conversion categories.

o use a format string with fewer format specifiers than required. Although this is legal a warning is issued because
most occurrences of this are due to programmer error.

The following example shows the subtyping rules in action:

@Il18nFormat ({NUMBER, DATE}) String f;

f = "{0, number, #.#} {1, date}"; // OK

f = "{0, number} {1}"; // OK, GENERAL is weaker (less restrictive) than DATE

f = "{0} {1, date}"; // OK, GENERAL is weaker (less restrictive) than NUMBER

f = "{0, number}"; // warning: last argument is ignored

£ ="{0r"; // warning: last argument is ignored

f = "{0, number} {1, number}"; // error: NUMBER is stronger (more restrictive) than DATE
£ ="{0} {1} (2}"; // error: too many arguments

The conversion categories are:

UNUSED indicates an unused argument. For example, in MessageFormat.format ("{0, number} {2, number}",
3.14, "Hello", 2.718) , the second argument Hello is unused. Thus, the conversion categories for the
format, 0, number 2, number,is (NUMBER, UNUSED, NUMBER).

GENERAL means that any value can be supplied as an argument.

DATE is applicable for date, time, and number types. An argument needs to be of Date, Time), or Number|type or a
subclass of them, including Timestamp and the classes listed immediately below.

NUMBER| means that the argument needs to be of Number type or a subclass: Number, AtomicInteger, AtomicLong,
BigDecimal, BigInteger, Byte, Double, Float, Integer, Long, Short.

15.4 What the Internationalization Format String Checker checks

The Internationalization Format String Checker checks calls to the i18n formatting method MessageFormat . format
and guarantees the following:

1. The checker issues a warning for the following cases:

(a) There are missing arguments from what is required by the format string.
MessageFormat.format ("{0, number} {1, number}", 3.14); // Output: 3.14 {1}
(b) More arguments are passed than what is required by the format string.
MessageFormat.format ("{0, number}", 1, new Date());
MessageFormat.format ("{0, number} {0, number}", 3.14, 3.14);

118

../api/org/checkerframework/checker/i18nformatter/qual/I18nConversionCategory.html#UNUSED
../api/org/checkerframework/checker/i18nformatter/qual/I18nConversionCategory.html#GENERAL
../api/org/checkerframework/checker/i18nformatter/qual/I18nConversionCategory.html#DATE
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Date.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Time.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Number.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Timestamp.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nConversionCategory.html#NUMBER
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Number.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/atomic/AtomicInteger.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/atomic/AtomicLong.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Byte.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Double.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Float.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Integer.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Long.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Short.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/text/MessageFormat.html#format(java.lang.String,java.lang.Object...)

This does not cause an error at run time, but it often indicates a programmer mistake. If it is intentional,
then you should suppress the warning (see Chapter 32)).

(c) Some argument is an array of objects.
MessageFormat.format ("{0, number} {1}", array);
The checker cannot verify whether the format string is valid, so the checker conservatively issues a warning.
This is a limitation of the Internationalization Format String Checker.

2. The checker issues an error for the following cases:
(a) The format string is invalid.

e Unmatched braces.

MessageFormat.format ("{0, time", new Date());

e The argument index is not an integer or is negative.
MessageFormat.format ("{0.2, time}", new Date());
MessageFormat.format ("{-1, time}", new Date());

e Unknown format type.

MessageFormat.format ("{0, foo}l", 3.14);

e Missing a format style required for choice format.
MessageFormat.format ("{0, choice}", 3.14);

e Wrong format style.

MessageFormat.format ("{0, time, number}", 3.14);

e Invalid subformats.

MessageFormat.format ("{0, number, #.#.#}", 3.14)

(b) Some argument’s type doesn’t satisfy its conversion category.
MessageFormat.format ("{0, number}", new Date());

The Checker also detects illegal assignments: assigning a non-format-string or an incompatible format string to a
variable declared as containing a specific type of format string. For example,

@Il18nFormat ({GENERAL, NUMBER}) String format;

// OK.

format = "{0} {1, number}";

// OK, GENERAL is weaker (less restrictive) than NUMBER.

format = "{0} {1}";

// OK, it is legal to have fewer arguments than required (less restrictive).
// But the warning will be issued instead.

format = "{0}";

// Error, the format string is stronger (more restrictive) than the specifiers.
format = "{0} {1} {2}";

// Error, the format string is more restrictive. NUMBER is a subtype of GENERAL.
format = "{0, number} {1, number}";

15.5 Resource files

A programmer rarely writes an i18n format string literally. (The examples in this chapter show that for simplicity.)
Rather, the i18n format strings are read from a resource file. The program chooses a resource file at run time depending
on the locale (for example, different resource files for English and Spanish users).

For example, suppose that the resourcel.properties file contains

keyl = The number is {0, number}.

Then code such as the following:

119

String formatPattern = ResourceBundle.getBundle ("resourcel").getString("keyl");
System.out.println (MessageFormat.format (formatPattern, 2.2361));

will output “The number is 2.2361.” A different resource file would contain keyl = E1 numero es {0, number}.
When you run the I18n Format String Checker, you need to indicate which resource file it should check. If you
change the resource file or use a different resource file, you should re-run the checker to ensure that you did not make
an error. The I18n Format String Checker supports two types of resource files: ResourceBundles and property files. The
example above shows use of resource bundles. For more about checking property files, see Chapter[I6] page [22]

15.6 Running the Internationalization Format Checker
The checker can be invoked by running one of the following commands (with the whole command on one line).

e Using ResourceBundles:

javac -processor org.checkerframework.checker.il8nformatter.Il8nFormatterChecker -Abundlenames=MyResource MyFile.java

e Using property files:
javac -processor org.checkerframework.checker.il8nformatter.Il8nFormatterChecker -Apropfiles=MyResource.properties
MyFile.java

o Not using a property file. Use this if the programmer hard-coded the format patterns without loading them from a
property file.

javac -processor org.checkerframework.checker.il8nformatter.Il8nFormatterChecker MyFile.java

15.7 Testing whether a string has an i18n format type

In the case that the checker cannot infer the 118n format type of a string, you can use the I18nFormatUtil.hasFormat
method to define the type of the string in the scope of a conditional statement.

Il18nFormatUtil.hasFormat!| returns true if the given string has the given i18n format type.

For an example, see Section[I5.8]
To use the|I18nFormatUtil|class, the checker—-util. jar file must be on the classpath at run time.

15.8 Examples of using the Internationalization Format Checker

e Using MessageFormat.formath

// suppose the bundle "MyResource" contains: keyl={0, number} {1, date}
String value = ResourceBundle.getBundle ("MyResource").getString("keyl");
MessageFormat.format (value, 3.14, new Date()); // OK

// error: incompatible types in argument; found String, expected number
MessageFormat.format (value, "Text", new Date());

e Using the |I18nFormatUtil.hasFormat method to check whether a format string has particular conversion
categories.

void testl (String format) {
if (Il8nFormatUtil.hasFormat (format, Il8nConversionCategory.GENERAL,
Il18nConversionCategory.NUMBER)) {
MessageFormat.format (format, "Hello", 3.14); // OK
// error: incompatible types in argument; found String, expected number
MessageFormat.format (format, "Hello", "Bye");

120

../api/org/checkerframework/checker/i18nformatter/util/I18nFormatUtil.html#hasFormat-java.lang.String-org.checkerframework.checker.i18nformatter.qual.I18nConversionCategory...-
../api/org/checkerframework/checker/i18nformatter/util/I18nFormatUtil.html#hasFormat-java.lang.String-org.checkerframework.checker.i18nformatter.qual.I18nConversionCategory...-
../api/org/checkerframework/checker/i18nformatter/util/I18nFormatUtil.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/text/MessageFormat.html#format(java.lang.String,java.lang.Object...)
../api/org/checkerframework/checker/i18nformatter/util/I18nFormatUtil.html#hasFormat-java.lang.String-org.checkerframework.checker.i18nformatter.qual.I18nConversionCategory...-

// error: missing arguments; expected 2 but 1 given

MessageFormat.format (format, "Bye");
// error: too many arguments; expected 2 but 3 given

MessageFormat.format (format, "A String", 3.14, 3.14);

}
e Using|¢I18nFormatFor to ensure that an argument is a particular type of format string.

static void method (@I18nFormatFor ("#2") String f, Object... args) {...}

// OK, MessageFormat.format(...) would return "3.14 Hello greater than one"
method ("{0, number} {1} {2, choice,O#zero|l#one|l<greater than one}",

3.14, "Hello", 100);

// error: incompatible types in argument; found String, expected number
method ("{0, number} {1}", "Bye", "Bye");

e Annotating a string with|@I18nFormat.
@Il8nFormat ({I18nConversionCategory.DATE}) String;

Sl = "{O}"

sl = "{0, number}"; // error: incompatible types in assignment

121

../api/org/checkerframework/checker/i18nformatter/qual/I18nFormatFor.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nFormat.html

Chapter 16

Property File Checker

The Property File Checker ensures that a property file or resource bundle (both of which act like maps from keys to
values) is only accessed with valid keys. Accesses without a valid key either return null or a default value, which
can lead to a NullPointerException or hard-to-trace behavior. The Property File Checker (Section[16.1] page [I22))
ensures that the used keys are found in the corresponding property file or resource bundle.

We also provide two specialized checkers. An Internationalization Checker (Section [I6.2] page [I23)) verifies
that code is properly internationalized. A Compiler Message Key Checker (Section [16.3] page [123) verifies that
compiler message keys used in the Checker Framework are declared in a property file. This is an example of a simple
specialization of the property file checker, and the Checker Framework source code shows how it is used.

It is easy to customize the property key checker for other related purposes. Take a look at the source code of the
Compiler Message Key Checker and adapt it for your purposes.

16.1 General Property File Checker

The general Property File Checker ensures that a resource key is located in a specified property file or resource bundle.

The annotation @PropertyKey indicates that the qualified CharSequence is a valid key found in the property file
or resource bundle. You do not need to annotate String literals. The checker looks up every String literal in the
specified property file or resource bundle, and adds annotations as appropriate.

If you pass a CharSequence (including String) variable to be eventually used as a key, you also need to annotate
all these variables with @PropertyKey.

The checker can be invoked by running the following command:

javac -processor org.checkerframework.checker.propkey.PropertyKeyChecker
-Abundlenames=MyResource MyFile.java ...

You must specify the resources, which map keys to strings. The checker supports two types of resource: resource
bundles and property files. You can specify one or both of the following two command-line options:

1. -Abundlenames=resource_name
resource_name is the name of the resource to be used with ResourceBundle.getBundle (). The checker
uses the default Locale and ClassLoader in the compilation system. (For a tutorial about ResourceBundles,
see https://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html.) Multiple resource
bundle names are separated by colons ’:’.

2. -Apropfiles=prop_file
prop_file is the name of a properties file that maps keys to values. The file format is described in the Javadoc for

6,

Properties.load (). Multiple files are separated by Java’s[File.pathSeparator| (semicolon “;” on Windows,

9

colon “:” on Linux and Mac).

122

../api/org/checkerframework/checker/propkey/qual/PropertyKey.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ResourceBundle.html#getBundle(java.lang.String,java.util.Locale,java.lang.ClassLoader)
https://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Properties.html#load(java.io.Reader)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/io/File.html#pathSeparator

16.2 Internationalization Checker (I18n Checker)

The Internationalization Checker, or I18n Checker, verifies that your code is properly internationalized. International-
ization is the process of designing software so that it can be adapted to different languages and locales without needing
to change the code. Localization is the process of adapting internationalized software to specific languages and locales.

Internationalization is sometimes called i18n, because the word starts with “i”’, ends with “n”, and has 18 characters
in between. Localization is similarly sometimes abbreviated as 110n.

The checker focuses on one aspect of internationalization: user-visible text should be presented in the user’s own
language, such as English, French, or German. This is achieved by looking up keys in a localization resource, which
maps keys to user-visible text. For instance, one version of a resource might map "CANCEL_STRING" to "Cancel", and
another version of the same resource might map "CANCEL_STRING" to "Abbrechen".

There are other aspects to localization, such as formatting of dates (3/5 vs. 5/3 for March 5), that the checker does
not check.

The Internationalization Checker verifies these two properties:

1. Any user-visible text should be obtained from a localization resource. For example, St ring literals should not be
output to the user.

2. When looking up keys in a localization resource, the key should exist in that resource. This check catches
incorrect or misspelled localization keys.

If you use the Internationalization Checker, you may want to also use the Internationalization Format String Checker,
or 118n Format String Checker (Chapter[T5). It verifies that internationalization format strings are well-formed and
used with arguments of the proper type, so that MessageFormat . format does not fail at run time.

16.2.1 Internationalization annotations

The Internationalization Checker supports two annotations:

@Localized indicates that the qualified CharSequence is a message that has been localized and/or formatted with
respect to the used locale.

QLocalizableKey| indicates that the qualified CharSequence or Object is a valid key found in the localization
resource. This annotation is a specialization of the @PropertyKey annotation, that gets checked by the general
Property Key Checker.

You may need to add the @Localized annotation to more methods in the JDK or other libraries, or in your own
code.

16.2.2 Running the Internationalization Checker

The Internationalization Checker can be invoked by running the following command:

javac -processor org.checkerframework.checker.il8n.I18nChecker -Abundlenames=MyResource MyFile.java ...

You must specify the localization resource, which maps keys to user-visible text. Like the general Property Key
Checker, the Internationalization Checker supports two types of localization resource: ResourceBundles using the
-Abundlenames=resource_name option or property files using the -Apropfiles=prop_file option.

16.3 Compiler Message Key Checker

The Checker Framework uses compiler message keys to output error messages. These keys are substituted by localized
strings for user-visible error messages. Using keys instead of the localized strings in the source code enables easier
testing, as the expected message keys can stay unchanged while the localized strings can still be modified. We use the
Compiler Message Key Checker to ensure that all internal keys are correctly localized. Instead of using the Property
File Checker, we use a specialized checker, giving us more precise documentation of the intended use of Strings.

123

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/text/MessageFormat.html#format(java.lang.String,java.lang.Object...)
../api/org/checkerframework/checker/i18n/qual/Localized.html
../api/org/checkerframework/checker/i18n/qual/LocalizableKey.html

The single annotation used by this checker is|@CompilerMessageKey. The Checker Framework is completely
annotated; for example, class org.checkerframework.framework.source.Result uses @CompilerMessageKey in
methods failure and warning. For most users of the Checker Framework there will be no need to annotate any
Strings, as the checker looks up all String literals and adds annotations as appropriate.

The Compiler Message Key Checker can be invoked by running the following command:

javac -processor org.checkerframework.checker.compilermsgs.CompilerMessagesChecker
-Apropfiles=messages.properties MyFile. java

You must specify the resource, which maps compiler message keys to user-visible text. The checker supports the
same options as the general property key checker. Within the Checker Framework we only use property files, so the
-Apropfiles=prop_file option should be used.

124

../api/org/checkerframework/checker/compilermsgs/qual/CompilerMessageKey.html

Chapter 17

Signature String Checker for string
representations of types

The Signature String Checker, or Signature Checker for short, verifies that string representations of types and signatures
are used correctly.

Java defines multiple different string representations for types (see Section[T7.1), and it is easy to misuse them or to
miss bugs during testing. Using the wrong string format leads to a run-time exception or an incorrect result. This is a
particular problem for fully qualified and binary names, which are nearly the same — they differ only for nested classes
and arrays.

The paper “Building and using pluggable type-checkers” [DDET11] (ICSE 2011, https://homes.cs.washingtonl.
edu/~mernst/pubs/pluggable-checkers-icse2011.pdf) describes case studies of the Signature String Checker.

17.1 Signature annotations

Java defines six formats for the string representation of a type. There is an annotation for each of these representations.
Figure|17.1{shows how they are related; examples appear in a table below.

@FullyQualifiedName A fully qualified name (JLS §6.7), such as mypackage.Outer. Inner, is used in Java
code and in messages to the user.

@ClassGetName The type representation used by the Class.getName (), Class.forName (String), and
Class.forName (String, boolean, ClassLoader) methods. This format is: for any non-array type, the
binary name; and for any array type, a format like the FieldDescriptor field descriptor, but using ““.”” where the
field descriptor uses *“/”. See examples below.

@FieldDescriptor A field descriptor JVMS §4.3.2), such as Lmypackage/Outer$Inner;,isusedina .class
file’s constant pool, for example to refer to other types. It abbreviates primitive types and array types. It uses
internal form (binary names, but with / instead of .; see JVMS §4.2) for class names. See examples below.

@BinaryName| A binary name (JLS §13.1), such as mypackage.Outer$Inner, is the conceptual name of a type in
its own .class file.

@InternalForm The internal form (JVMS §4.2), such as mypackage/Outer$Inner, is how a class name is actually
represented in its own .class file. It is also known as the “syntax of binary names that appear in class file
structures”. It is the same as the binary name, but with periods (.) replaced by slashes (/). Programmers more
often use the binary name, leaving the internal form as a JVM implementation detail.

@ClassGetSimpleName The type representation returned by the Class.getSimpleName () method. This format
is not required by any method in the JDK, so you will rarely write it in source code. The string can be empty.
This is not the same as the “simple name” defined in (JLS §6.2), which is the same as|@Identifier,

@FgBinaryName An extension of binary name format to represent primitives and arrays. Itis like|@FullyQualifiedName,
but using “$” instead of “.” to separate nested classes from their containing classes. For example, "pkg.Outer$Inner"

125

https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf
../api/org/checkerframework/checker/signature/qual/FullyQualifiedName.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-6.html#jls-6.7
../api/org/checkerframework/checker/signature/qual/ClassGetName.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Class.html#getName()
https://docs.oracle.com/javase/specs/jvms/se17/html/jvms-4.html#jvms-4.3.2
../api/org/checkerframework/checker/signature/qual/FieldDescriptor.html
https://docs.oracle.com/javase/specs/jvms/se17/html/jvms-4.html#jvms-4.3.2
https://docs.oracle.com/javase/specs/jvms/se17/html/jvms-4.html#jvms-4.2.1
../api/org/checkerframework/checker/signature/qual/BinaryName.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-13.html#jls-13.1
../api/org/checkerframework/checker/signature/qual/InternalForm.html
https://docs.oracle.com/javase/specs/jvms/se17/html/jvms-4.html#jvms-4.2
../api/org/checkerframework/checker/signature/qual/ClassGetSimpleName.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Class.html#getSimpleName()
https://docs.oracle.com/javase/specs/jls/se17/html/jls-6.html#jls-6.2
../api/org/checkerframework/checker/signature/qual/Identifier.html
../api/org/checkerframework/checker/signature/qual/FqBinaryName.html
../api/org/checkerframework/checker/signature/qual/FullyQualifiedName.html

@ClassGetSimpleName

@SignatureUnknown

|

@InternalForm ‘ I@FqBinaryName

@ClassGetName

@FieldDescriptor

@FullyQualifiedName

=

\

@BinaryName

@FieldDescriptorWithoutPackage

| @ArrayWithoutPackage

‘ | @DotSeparatedidentifiers ‘ | @BinaryNameWithoutPackage ‘

@ldentifierOrPrimitive Type

@PrimitiveType

@Identifier

| (@FieldDescriptorForPrimitive

Figure 17.1: Partial type hierarchy for the Signature type system, showing string representations of a Java type. The
type qualifiers are applicable to CharSequence and its subtypes. Programmers usually only need to write the boldfaced
qualifiers; other qualifiers are included to improve the internal handling of String literals.

or "pkg.Outer$Inner[][]" or "int []".
@CanonicalNamel Syntactically identical to @FullyQualifiedNamel but some classes have multiple fully-qualified
names, only one of which is canonical (see JLS §6.7).

Other type qualifiers are the intersection of two or more qualifiers listed above; for example, a @BinaryNameWithoutPackage
is a string that is a valid internal form and a valid binary name. A programmer should never or rarely use these qualifiers,
and you can ignore them as implementation details of the Signature Checker, though you might occasionally see them in
an error message. These qualifiers exist to give literals sufficiently precise types that they can be used in any appropriate

context.

Java also defines other string formats for a type, notably qualified names (JLS §6.2). The Signature Checker does
not include annotations for these.
Here are examples of the supported formats:

fully qualified name Class.getName field descriptor binary name internal form Class.getSimpleName
int int I n/a for primitive type | n/a for primitive type | int
int[][] [[T [[T n/a for array type n/a for array type int[][]
MyClass MyClass LMyClass; MyClass MyClass MyClass
MyClass[] [LMyClass; [LMyClass; n/a for array type n/a for array type MyClass[]
n/a for anonymous class MyClass$22 LMyClass$22; MyClass$22 MyClass$22 (empty string)
n/a for array of anon. class | [LMyClass$22; [LMyClass$22; n/a for array type n/a for array type [
java.lang.Integer java.lang.Integer Ljava/lang/Integer; | java.lang.Integer java/lang/Integer Integer
java.lang.Integer[] [Ljava.lang.Integer; | [Ljava/lang/Integer; | n/a for array type n/a for array type Integer[]
pkg.Outer.Inner pkg.Outer$Inner Lpkg/Outer$Inner; | pkg.Outer$Inner pkg/Outer$Inner Inner
pkg.Outer.Inner[] [Lpkg.Outer$Inner; | [Lpkg/Outer$Inner; | n/a for array type n/a for array type Innerf[]
n/a for anonymous class pkg.Outer$22 Lpkg/Outer$22; pkg.Outer$22 pkg/Outer$22 (empty string)
n/a for array of anon. class | [Lpkg.Outer$22; [Lpkg/Outer$22; n/a for array type n/a for array type [

Java defines one format for the string representation of a method signature:

@MethodDescriptor A method descriptor JVMS §4.3.3) identifies a method’s signature (its parameter and return
types), just as a field descriptor identifies a type. The method descriptor for the method

126

../api/org/checkerframework/checker/signature/qual/CanonicalName.html
../api/org/checkerframework/checker/signature/qual/FullyQualifiedName.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-6.html#jls-6.7
../api/org/checkerframework/checker/signature/qual/BinaryNameWithoutPackage.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-6.html#jls-6.2
../api/org/checkerframework/checker/signature/qual/MethodDescriptor.html
https://docs.oracle.com/javase/specs/jvms/se17/html/jvms-4.html#jvms-4.3.3

Object mymethod(int i, double d, Thread t)
is
(IDLjava/lang/Thread;)Ljava/lang/Object;

17.2 'What the Signature Checker checks

Certain methods in the JDK, such as Class. forName, are annotated indicating the type they require. The Signature
Checker ensures that clients call them with the proper arguments. The Signature Checker does not reason about string

operations such as concatenation, substring, parsing, etc.
To run the Signature Checker, supply the -processor org.checkerframework.checker.signature.SignatureChecker

command-line option to javac.

127

Chapter 18

GUI Effect Checker

One of the most prevalent GUI-related bugs is invalid Ul update or invalid thread access: accessing the Ul directly
from a background thread.

Most GUI frameworks (including Android, AWT, Swing, and SWT) create a single distinguished thread — the UI
event thread — that handles all GUI events and updates. To keep the interface responsive, any expensive computation
should be offloaded to background threads (also called worker threads). If a background thread accesses a Ul element
such as a JPanel (by calling a JPanel method or reading/writing a field of JPanel), the GUI framework raises an exception
that terminates the program. To fix the bug, the background thread should send a request to the UI thread to perform the
access on its behalf.

It is difficult for a programmer to remember which methods may be called on which thread(s). The GUI Effect
Checker solves this problem. The programmer annotates each method to indicate whether:

e It accesses no Ul elements (and may run on any thread); such a method is said to have the “safe effect”.
e It may access Ul elements (and must run on the Ul thread); such a method is said to have the “UI effect”.

The GUI Effect Checker verifies these effects and statically enforces that Ul methods are only called from the
correct thread. A method with the safe effect is prohibited from calling a method with the UI effect.

For example, the effect system can reason about when method calls must be dispatched to the UI thread via a
message such as Display.syncExec.

@SafeEffect
public void calledFromBackgroundThreads (JLabel 1) {
1.setText ("Foo"); // Error: calling a QUIEffect method from a @SafeEffect method

Display.syncExec (new Runnable {
QUIEffect // inferred by default
public void run() {
1.setText ("Bar"); // OK: accessing JLabel from code run on the UI thread
}
b

The GUI Effect Checker’s annotations fall into three categories:

e cffect annotations on methods (Section [I8.1)),
e class or package annotations controlling the default effect (Section[18.4), and
o effect-polymorphism: code that works for both the safe effect and the Ul effect (Section|18.5)).

128

18.1 GUI effect annotations

There are two primary GUI effect annotations:

RSafeEffect! is a method annotation marking code that must not access UI objects.
QUIEffect is a method annotation marking code that may access UI objects. Most UI object methods (e.g., methods
of JPanel) are annotated as QUIEffect.

@SafeEffect is a sub-effect of RUIEffect, in that it is always safe to call a @SafeEffect method anywhere it is
permitted to call a QUIEffect method. We write this relationship as
@SafeEffect < CUIEffect

18.2 What the GUI Effect Checker checks

The GUI Effect Checker ensures that only the UI thread accesses Ul objects. This prevents GUI errors such as invalid
Ul update and invalid thread access.
The GUI Effect Checker issues errors in the following cases:

e A QUIEffect method is invoked by a @SafeEffect method.
e Method declarations violate subtyping restrictions: a supertype declares a @SafeEffect method, and a subtype
annotates an overriding version as QUIEffect.

Additionally, if a method implements or overrides a method in two supertypes (two interfaces, or an interface and
parent class), and those supertypes give different effects for the methods, the GUI Effect Checker issues a warning (not
an error).

18.3 Running the GUI Effect Checker

The GUI Effect Checker can be invoked by running the following command:

javac -processor org.checkerframework.checker.guieffect.GuiEffectChecker MyFile.java ...

18.4 Annotation defaults

The default method annotation is @SafeEffect, since most code in most programs is not related to the UL This also
means that typically, code that is unrelated to the UI need not be annotated at all.
The GUI Effect Checker provides three primary ways to change the default method effect for a class or package:

QUITypel is a class annotation that makes the effect for unannotated methods in that class default to QUIEffect. (See
also QUI in Section[I8.5.2])

QUIPackage| is a package annotation, that makes the effect for unannotated methods in that package default to
QUIEffect. It is not transitive; a package nested inside a package marked @UIPackage does not inherit the
changed default.

@SafeType is a class annotation that makes the effect for unannotated methods in that class default to @SafeEffect.
Because @SafeEffect is already the default effect, @SafeType is only useful for class types inside a package
marked @UIPackage.

There is one other place where the default annotation is not automatically @SafeEffect: anonymous inner classes.
Since anonymous inner classes exist primarily for brevity, it would be unfortunate to spoil that brevity with extra
annotations. By default, an anonymous inner class method that overrides or implements a method of the parent type
inherits that method’s effect. For example, an anonymous inner class implementing an interface with method GUIEffect
void m() need not explicitly annotate its implementation of m () ; the implementation will inherit the parent’s effect.
Methods of the anonymous inner class that are not inherited from a parent type follow the standard defaulting rules.

129

../api/org/checkerframework/checker/guieffect/qual/SafeEffect.html
../api/org/checkerframework/checker/guieffect/qual/UIEffect.html
../api/org/checkerframework/checker/guieffect/qual/UIType.html
../api/org/checkerframework/checker/guieffect/qual/UIPackage.html
../api/org/checkerframework/checker/guieffect/qual/SafeType.html

18.5 Polymorphic effects

Sometimes a type is reused for both Ul-specific and background-thread work. A good example is the Runnable
interface, which is used both for creating new background threads (in which case the run () method must have the
@SafeEffect) and for sending code to the UI thread to execute (in which case the run () method may have the
QUIEffect). But the declaration of Runnable.run () may have only one effect annotation in the source code. How do
we reconcile these conflicting use cases?

Effect-polymorphism permits a type to be used for both UI and non-UI purposes. It is similar to Java’s generics in
that you define, then use, the effect-polymorphic type. Recall that to define a generic type, you write a type parameter
such as <T> and use it in the body of the type definition; for example, class List<T> { ... T get() {...}

}. To instantiate a generic type, you write its name along with a type argument; for example, List<Date> myDates;.

18.5.1 Defining an effect-polymorphic type

To declare that a class is effect-polymorphic, annotate its definition with |@PolyUITypel To use the effect variable in
the class body, annotate a method with @PolyUIEffectl It is an error to use @PolyUIEffect in a class that is not
effect-polymorphic.

Consider the following example:

@PolyUIType

public interface Runnable {
@PolyUIEffect
void run();

}

This declares that class Runnable is parameterized over one generic effect, and that when Runnable is instantiated, the
effect argument will be used as the effect for the run method.

18.5.2 Using an effect-polymorphic type
To instantiate an effect-polymorphic type, write one of these three type qualifiers before a use of the type:

QAlwaysSafe instantiates the type’s effect to @SafeEffect.

QUI instantiates the type’s effect to GUIEffect. Additionally, it changes the default method effect for the class to
@UIEffect

@PolyUI instantiates the type’s effect to @PolyUIEffect for the same instantiation as the current (containing) class.
For example, this is the qualifier of the receiver this inside a method of a @PolyUIType class, which is how one
method of an effect-polymorphic class may call an effect-polymorphic method of the same class.

As an example:

@AlwaysSafe Runnable s = ...; s.run(); // s.run() 1s @SafeEffect
@PolyUI Runnable p = ...; p.run(); // p.run() is @PolyUIEffect (context-dependent)
QUI Runnable u = ...; u.run(); // u.run() is QUIEffect

It is an error to apply an effect instantiation qualifier to a type that is not effect-polymorphic.

Note that no annotation is required on the anonymous class declaration itself (e.g. new Runnable () {...} does not
require a type use annotation, although the variable, field, or argument it ends up being assigned to might). Instead, the
GUI Effect Checker will infer the effect qualifier based on the method being called from within the members of that
specific anonymous class.

130

../api/org/checkerframework/checker/guieffect/qual/PolyUIType.html
../api/org/checkerframework/checker/guieffect/qual/PolyUIEffect.html
../api/org/checkerframework/checker/guieffect/qual/AlwaysSafe.html
../api/org/checkerframework/checker/guieffect/qual/UI.html
../api/org/checkerframework/checker/guieffect/qual/PolyUI.html

18.5.3 Subclassing a specific instantiation of an effect-polymorphic type

Sometimes you may wish to subclass a specific instantiation of an effect-polymorphic type, just as you may extend
List<String>.
To do this, simply place the effect instantiation qualifier by the name of the type you are defining, e.g.:

Quz

public class UIRunnable extends Runnable {...}
@AlwaysSafe

public class SafeRunnable extends Runnable {...}

The GUI Effect Checker will automatically apply the qualifier to all classes and interfaces the class being defined
extends or implements. (This means you cannot write a class that is a subtype of a @AlwaysSafe Foo and a @UI Bar,
but this has not been a problem in our experience.)

18.5.4 Subtyping with polymorphic effects

With three effect annotations, we must extend the static sub-effecting relationship:

@SafeEffect < @PolyUIEffect < QUIEffect
This is the correct sub-effecting relation because it is always safe to call a €SafeEffect method (whether from an
effect-polymorphic method or a UI method), and a QUIEf fect method may safely call any other method.

This induces a subtyping hierarchy on type qualifiers:
@AlwaysSafe < @PolyUI < @QUI

This is sound because a method instantiated according to any qualifier will always be safe to call in place of a method
instantiated according to one of its super-qualifiers. This allows clients to pass “safer” instances of some object type to
a given method.

Effect polymorphism and arguments

Sometimes it is useful to have @PolyUI parameters on a method. As a trivial example, this permits us to specify an
identity method that works for both @UI Runnable and @AlwaysSafe Runnable:

public @PolyUI Runnable id(@PolyUI Runnable r) {
return r;

}

This use of @PolyUI will be handled as is standard for polymorphic qualifiers in the Checker Framework (see Section
30.2).

@PolyUIEffect methods should generally not use €PolyUI arguments: it is permitted by the framework, but its
interaction with inheritance is subtle, and may not behave as you would hope.

The shortest explanation is this: @PolyUI arguments may only be overridden by @PolyUI arguments, even though
the implicitly @PolyUI receiver may be overridden with a @AlwaysSafe receiver.

As noted earlier (Section[30.1.6), Java’s generics are invariant — A<X> is a subtype of B<Y> only if X is identical
to Y. Class-level use of @PolyUI behaves slightly differently. Marking a type declaration @PolyUIType is conceptu-
ally equivalent to parameterizing the type by some E extends Effect. But in this view, Runnable<SafeEffect>
(really @AlwaysSafe Runnable) would be considered a subtype of Runnable<UIEffect> (really @UI Runnable), as
explained earlier in this section. Java’s generics do not permit this, which is called covariant subtyping in the effect
parameter. Permitting it for all generics leads to problems where a type system can miss errors. Java solves this by
making all generics invariant, which rejects more programs than strictly necessary, but leads to an easy-to-explain limi-
tation. For this checker, covariant subtyping of effect parameters is very important: being able to pass an @AlwaysSafe
Runnable in place of a @UI Runnable is extremely useful. Since we need to allow some cases for flexibility, but need
to reject other cases to avoid missing errors, the distinction is a bit more subtle for this checker.

Consider this small example (warning: the following is rejected by the GUI Effect Checker):

131

@PolyUIType
public interface Dispatcher {
@PolyUIEffect
void dispatch (€PolyUI Runnable toRun);
}
@SafeType
public class SafeDispatcher implements Dispatcher {
@override
public void dispatch(@AlwaysSafe Runnable toRun) {
runOnBackgroundThread (toRun) ;

This may initially seem like harmless code to write, which simply specializes the implicit effect parameter from
Dispatcher in the SafeDispatcher implementation. However, the way method effect polymorphism is implemented
is by implicitly making the receiver of a @PolyUIEffect method — the object on which the method is invoked —
@PolyUI. So if the definitions above were permitted, the following client code would be possible:

@AlwaysSafe SafeDispatcher s = ...;
@UI Runnable uitask = ...;
s.dispatch(uitask);

At the call to dispatch, the Checker Framework is free to consider s as its supertype, QUI SafeDispatcher. This
permits the framework to choose the same qualifier for both the (implicit) receiver use of @PolyUI and the toRun
argument to Dispatcher.dispatch, passing the checker. But this code would then pass a Ul-thread-only task to a
method which should only accept background thread tasks — exactly what the checker should prevent!
To resolve this, the GUI Effect Checker rejects the definitions above, specifically the @AlwaysSafe on SafeDispatcher.dispatch’s
parameter, which would need to remain @PolyUTI.
A subtlety of the code above is that the receiver for SafeDispatcher.dispatch is also overridden, switching from
a @PolyUI receiver to a @Safe receiver. That change is permissible. But when that is done, the polymorphic arguments
may no longer be interchangeable with the receiver.

18.6 References

The ECOOP 2013 paper “JavaUI: Effects for controlling UI object access” [GDEG13]] (ECOOP 2013, https://homes,
cs.washington.edu/~mernst/pubs/gui-thread-ecoop2013-abstract.html) includes some case studies on the
checker’s efficacy, including descriptions of the relatively few false warnings we encountered. It also contains a more
formal description of the effect system.

132

https://homes.cs.washington.edu/~mernst/pubs/gui-thread-ecoop2013-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/gui-thread-ecoop2013-abstract.html

Chapter 19

Units Checker

For many applications, it is important to use the correct units of measurement for primitive types. For example, NASA’s
Mars Climate Orbiter (cost: $327 million) was lost because of a discrepancy between use of the metric unit Newtons
and the imperial measure Pound-force.

The Units Checker ensures consistent usage of units. For example, consider the following code:

@m int meters = 5 * UnitsTools.m;
@s int secs = 2 * UnitsTools.s;
@mPERs int speed = meters / secs;

Due to the annotations @m and @s, the variables meters and secs are guaranteed to contain only values with meters
and seconds as units of measurement. The assignment of an unqualified value to meters, as in meters = 99, will be
flagged as an error by the Units Checker. Utility class UnitsTools provides constants that you can multiply with unquali-
fied integer are multiplied to get values of the corresponding unit; for example, meters = 99 * UnitsTools.mis legal,
orjustmeters = 99 * mifthefile contains import static org.checkerframework.checker.units.util.UnitsTools.*;.
To use the [UnitsTools|class, the checker—util. jar file must be on the classpath at run time.
The division meters/secs takes the types of the two operands into account and determines that the result is of
type meters per second, signified by the @mPERs qualifier. We provide an extensible framework to define the result of
operations on units.

19.1 Units annotations

The checker currently supports three varieties of units annotations: kind annotations (@Length, @Mass) ...), the SI units
(@m,|@kgl ...), and polymorphic annotations (@PolyUnit).

Kind annotations can be used to declare what the expected unit of measurement is, without fixing the particular unit
used. For example, one could write a method taking a @Length value, without specifying whether it will take meters or
kilometers. The following kind annotations are defined:

@Acceleration
@Angle

@dArea
@Current
@Force
@Length
@Luminance
@Mass

@Speed
@Substance

133

../api/org/checkerframework/checker/units/util/UnitsTools.html
../api/org/checkerframework/checker/units/util/UnitsTools.html
../api/org/checkerframework/checker/units/qual/Length.html
../api/org/checkerframework/checker/units/qual/Mass.html
../api/org/checkerframework/checker/units/qual/m.html
../api/org/checkerframework/checker/units/qual/kg.html
../api/org/checkerframework/checker/units/qual/PolyUnit.html
../api/org/checkerframework/checker/units/qual/Acceleration.html
../api/org/checkerframework/checker/units/qual/Angle.html
../api/org/checkerframework/checker/units/qual/Area.html
../api/org/checkerframework/checker/units/qual/Current.html
../api/org/checkerframework/checker/units/qual/Force.html
../api/org/checkerframework/checker/units/qual/Length.html
../api/org/checkerframework/checker/units/qual/Luminance.html
../api/org/checkerframework/checker/units/qual/Mass.html
../api/org/checkerframework/checker/units/qual/Speed.html
../api/org/checkerframework/checker/units/qual/Substance.html

@Temperature
@Time
@Volume

For each kind of unit, the corresponding SI unit of measurement is defined:

For @Acceleration: Meter Per Second Square @mPERs2

For @Angle: Radians @radians) and the derived unit Degrees |@degrees

For @Area: the derived units square millimeters @mm2), square meters @m2, and square kilometers @km2
For @Current: Ampere @A

For @Force: Newton |@N and the derived unit kilonewton (@kN

For @Length: Meters @m and the derived units millimeters |@mm and kilometers |¢km

For @Luminance: Candelal@cd

For @Mass: kilograms @kg and the derived units grams @g and metric tons @t

For @Speed: meters per second |@mPERs|and kilometers per hour @kmPERh

10. For @Substance: Mole @mol

11. For @Temperature: Kelvin|@K and the derived unit Celsius |QC

12. For @Time: seconds @s|and the derived units minutes (@min|and hours|@h

13. For @Volume: the derived units cubic millimeters @mm3, cubic meters @m3}, and cubic kilometers @km3

PN =

e

You may specify SI unit prefixes, using enumeration Prefix. The basic SI units (@s, @m, @g, @A, @K, @mol, @cd)
take an optional Prefix enum as argument. For example, to use nanoseconds as unit, you could use @s (Prefix.nano)
as a unit type. You can sometimes use a different annotation instead of a prefix; for example, Gmm is equivalent to
@m(Prefix.milli).

Class UnitsTools contains a constant for each SI unit. To create a value of the particular unit, multiply an
unqualified value with one of these constants. By using static imports, this allows very natural notation; for example,
after statically importing UnitsTools.m, the expression 5 * mrepresents five meters. As all these unit constants are
public, static, and final with value one, the compiler will optimize away these multiplications. To use the UnitsTools
class, the checker-util. jar file must be on the classpath at run time.

The polymorphic annotation |@PolyUnit|enables you to write a method that takes an argument of any unit type and
returns a result of that same type. For more about polymorphic qualifiers, see Section For an example of its use,
see the @PolyUnit Javadoc.

19.2 Extending the Units Checker

You can create new kind annotations and unit annotations that are specific to the particular needs of your project. An
easy way to do this is by copying and adapting an existing annotation. (In addition, search for all uses of the annotation’s
name throughout the Units Checker implementation, to find other code to adapt; read on for details.)

Here is an example of a new unit annotation.

@ocumented

@Retention (RetentionPolicy.RUNTIME)

@Target ({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
@SubtypeOf ({Time.class})

@UnitsMultiple (quantity=s.class, prefix=Prefix.nano)

public @interface ns {}

The @SubtypeOf meta-annotation specifies that this annotation introduces an additional unit of time. The
@UnitsMultiple meta-annotation specifies that this annotation should be a nano multiple of the basic unit @s:
@ns and @s (Prefix.nano) behave equivalently and interchangeably. Most annotation definitions do not have a
@UnitsMultiple meta-annotation.

134

../api/org/checkerframework/checker/units/qual/Temperature.html
../api/org/checkerframework/checker/units/qual/Time.html
../api/org/checkerframework/checker/units/qual/Volume.html
../api/org/checkerframework/checker/units/qual/mPERs2.html
../api/org/checkerframework/checker/units/qual/radians.html
../api/org/checkerframework/checker/units/qual/degrees.html
../api/org/checkerframework/checker/units/qual/mm2.html
../api/org/checkerframework/checker/units/qual/m2.html
../api/org/checkerframework/checker/units/qual/km2.html
../api/org/checkerframework/checker/units/qual/A.html
../api/org/checkerframework/checker/units/qual/N.html
../api/org/checkerframework/checker/units/qual/kN.html
../api/org/checkerframework/checker/units/qual/m.html
../api/org/checkerframework/checker/units/qual/mm.html
../api/org/checkerframework/checker/units/qual/km.html
../api/org/checkerframework/checker/units/qual/cd.html
../api/org/checkerframework/checker/units/qual/kg.html
../api/org/checkerframework/checker/units/qual/g.html
../api/org/checkerframework/checker/units/qual/t.html
../api/org/checkerframework/checker/units/qual/mPERs.html
../api/org/checkerframework/checker/units/qual/kmPERh.html
../api/org/checkerframework/checker/units/qual/mol.html
../api/org/checkerframework/checker/units/qual/K.html
../api/org/checkerframework/checker/units/qual/C.html
../api/org/checkerframework/checker/units/qual/s.html
../api/org/checkerframework/checker/units/qual/min.html
../api/org/checkerframework/checker/units/qual/h.html
../api/org/checkerframework/checker/units/qual/mm3.html
../api/org/checkerframework/checker/units/qual/m3.html
../api/org/checkerframework/checker/units/qual/km3.html
../api/org/checkerframework/checker/units/qual/Prefix.html
../api/org/checkerframework/checker/units/util/UnitsTools.html
../api/org/checkerframework/checker/units/qual/PolyUnit.html
../api/org/checkerframework/checker/units/qual/PolyUnit.html

Note that all custom annotations must have the @Target (ElementType.TYPE_USE) meta-annotation. See section
3351

To take full advantage of the additional unit qualifier, you need to do two additional steps. (1) Provide constants that
convert from unqualified types to types that use the new unit. See class UnitsTools for examples (you will need to
suppress a checker warning in just those few locations). (2) Put the new unit in relation to existing units. Provide an
implementation of the UnitsRelations interface as a meta-annotation to one of the units.

See demonstration docs/examples/units—extension/ for an example extension that defines Hertz (hz) as scalar
per second, and defines an implementation of UnitsRelations to enforce it.

19.3 What the Units Checker checks

The Units Checker ensures that unrelated types are not mixed.

All types with a particular unit annotation are disjoint from all unannotated types, from all types with a different
unit annotation, and from all types with the same unit annotation but a different prefix.

Subtyping between the units and the unit kinds is taken into account, as is the @UnitsMultiple meta-annotation.

Multiplying a scalar with a unit type results in the same unit type.

The division of a unit type by the same unit type results in the unqualified type.

Multiplying or dividing different unit types, for which no unit relation is known to the system, will result in a
MixedUnits type, which is separate from all other units. If you encounter a MixedUnits annotation in an error message,
ensure that your operations are performed on correct units or refine your UnitsRelations implementation.

The Units Checker does not change units based on multiplication; for example, if variable mass has the type kg
double, then mass * 1000 has that same type rather than the type @g double. (The Units Checker has no way of
knowing whether you intended a conversion, or you were computing the mass of 1000 items. You need to make all
conversions explicit in your code, and it’s good style to minimize the number of conversions.)

19.4 Running the Units Checker

The Units Checker can be invoked by running the following commands.

o If your code uses only the SI units that are provided by the framework, simply invoke the checker:
javac -processor org.checkerframework.checker.units.UnitsChecker MyFile. java ...

e If you define your own units, provide the fully-qualified class names of the annotations through the -Aunits
option, using a comma-no-space-separated notation:
javac -classpath /full/path/to/myProject/bin:/full/path/to/myLibrary/bin \
-processor org.checkerframework.checker.units.UnitsChecker \
-Aunits=myPackage.qual.MyUnit,myPackage.qual.MyOtherUnit MyFile.java
The annotations listed in ~Aunits must be accessible to the compiler during compilation. Before you run the
Units Checker with javac, they must be compiled and on the same path (the classpath or processorpath) as the
Checker Framework. It is not sufficient to supply their source files on the command line.
e You can also provide the fully-qualified paths to a set of directories that contain units qualifiers through the
-AunitsDirs option, using a colon-no-space-separated notation. For example, if the Checker Framework is on
the classpath rather than the processorpath:
javac -classpath /full/path/to/myProject/bin:/full/path/to/myLibrary/bin \
-processor org.checkerframework.checker.units.UnitsChecker \

-AunitsDirs=/full/path/to/myProject/bin:/full/path/to/myLibrary/bin MyFile.java ...

Note that in these two examples, the compiled class file of the myPackage.qual.MyUnit and myPackage.qual.MyOtherUnit
annotations must exist in either the myProject /bin directory or the myLibrary/bin directory. The following
placement of the class files will work with the above commands:

.../myProject/bin/myPackage/qual/MyUnit.class

.../myProject/bin/myPackage/qual/MyOtherUnit.class

135

The two options can be used at the same time to provide groups of annotations from directories, and individually
named annotations.

Also, see the example project in the docs/examples/units-extension directory.

19.5 Suppressing warnings

One example of when you need to suppress warnings is when you initialize a variable with a unit type by a literal
value. To remove this warning message, it is best to introduce a constant that represents the unit and to add a
@SuppressWarnings annotation to that constant. For examples, see class UnitsTools.

19.6 References

e The GNU Units tool provides a comprehensive list of units:
https://www.gnu.orqg/software/units/

e The F# units of measurement system inspired some of our syntax:
https://en.wikibooks.org/wiki/F_Sharp_Programming/Units_of_Measure

136

https://www.gnu.org/software/units/
https://en.wikibooks.org/wiki/F_Sharp_Programming/Units_of_Measure

Chapter 20

Signedness Checker

The Signedness Checker guarantees that signed and unsigned integral values are not mixed together in a computation.
In addition, it prohibits meaningless operations, such as division on an unsigned value.

Recall that a computer represents a number as a sequence of bits. Signedness indicates how to interpret the most
significant bit. For example, the bits 10000010 ordinarily represent the value -126, but when interpreted as unsigned,
those bits represent the value 130. The bits 01111110 represent the value 126 in signed and in unsigned interpretation.
The range of signed byte values is -128 to 127. The range of unsigned byte values is 0 to 255.

Signedness is only applicable to the integral types byte, short, int, and long and their boxed variants Byte,
Short, Integer, and Long. char and Character are always unsigned. Floating-point types float, double, Float,
and Double are always signed.

Signedness is primarily about how the bits of the representation are interpreted, not about the values that it can
represent. An unsigned value is always positive, but just because a variable’s value is positive does not mean that it
should be marked as @Unsigned. If variable v will be compared to a signed value, or used in arithmetic operations
with a signed value, then v should have signed type. To indicate the range of possible values for a variable, use the
@NonNegative annotation of the Index Checker (see Chapter[I2] page[96) or the @ IntRange|annotation of the Constant
Value Checker (see Chapter [22] page[T43).

Additional details appear in the paper ‘“Preventing signedness errors in numerical computations in Java” [Mac16]
(FSE 2016).

20.1 Annotations

The Signedness Checker uses type annotations to indicate the signedness that the programmer intends an expression to
have.
These are the qualifiers in the signedness type system:

SignedPositive-
FromUnsigned

SignednessBottom ‘

Figure 20.1: The type qualifier hierarchy of the signedness annotations. Qualifiers in gray are used internally by the
type system but should never be written by a programmer.

137

../api/org/checkerframework/checker/index/qual/NonNegative.html
../api/org/checkerframework/common/value/qual/IntRange.html

QUnsigned indicates that the programmer intends the value to be interpreted as unsigned. That is, if the most
significant bit in the bitwise representation is set, then the bits should be interpreted as a large positive value.

@Signed indicates that the programmer intends the value to be interpreted as signed. That is, if the most significant
bit in the bitwise representation is set, then the bits should be interpreted as a negative value. This is the default
annotation.

@SignedPositive indicates that a value is known at compile time to be in the positive signed range, so it has the
same interpretation as signed or unsigned and may be used with either interpretation. (Equivalently, the most
significant bit is guaranteed to be 0.) Programmers should usually write @Signed| or @Unsigned instead.

@SignedPositiveFromUnsigned indicates that a value is in the positive signed range, as with @SignedPositive,
Furthermore, the value was derived from values that can be interpreted as @Unsigned. Programmers should
rarely write this annotation.

@SignednessGlb indicates that a value may be interpreted as unsigned or signed. It covers the same cases as
@SignedPositivel plus manifest literals, to prevent the programmer from having to annotate them all explicitly.
This annotation should almost never be written by the programmer.

QPolySigned indicates qualifier polymorphism. When two formal parameter types are annotated with @PolySigned,
the two arguments at a call site must have the same signedness type annotation. (This differs from the standard
rule for polymorphic qualifiers.) For a description of qualifier polymorphism, see Section[30.2}

QUnknownSignedness indicates that a value’s type is not relevant or known to this checker. This annotation is
used internally, and should not be written by the programmer.

@SignednessBottom indicates that the value is null. This annotation is used internally, and should not be written
by the programmer.

20.1.1 Default qualifiers

The only type qualifier that the programmer should need to write is @Unsigned. When a programmer leaves an
expression unannotated, the Signedness Checker treats it in one of the following ways:

e All byte, short, int, and long literals default to @SignednessGlb.
e All char and Character expressions default to|@Unsigned.

e All char and Character variables default to|@Unsigned.

e All other expressions default to @Signed.

20.2 Prohibited operations

The Signedness Checker prohibits the following uses of operators:

Division (/) or modulus (%) with an @Unsigned operand.

Signed right shift (>>) with an @Unsigned left operand.

Unsigned right shift (>>>) with a @Signed left operand.

Greater/less than (or equal) comparators (<, <=, >, >=) with an @Unsigned operand.

Any other binary operator with one @Unsigned operand and one @Signed operand, with the exception of left
shift (<<).

There are some special cases where these operations are permitted; see Section [20.2.2]

Like every type-checker built with the Checker Framework, the Signedness Checker ensures that assignments
and pseudo-assignments have consistent types. For example, it is not permitted to assign a @Signed expression to an
@Unsigned variable or vice versa.

20.2.1 Rationale

The Signedness Checker prevents misuse of unsigned values in Java code. Most Java operations interpret operands as
signed. If applied to unsigned values, those operations would produce unexpected, incorrect results.

138

../api/org/checkerframework/checker/signedness/qual/Unsigned.html
../api/org/checkerframework/checker/signedness/qual/Signed.html
../api/org/checkerframework/checker/signedness/qual/SignedPositive.html
../api/org/checkerframework/checker/signedness/qual/Signed.html
../api/org/checkerframework/checker/signedness/qual/Unsigned.html
../api/org/checkerframework/checker/signedness/qual/SignedPositiveFromUnsigned.html
../api/org/checkerframework/checker/signedness/qual/SignedPositive.html
../api/org/checkerframework/checker/signedness/qual/Unsigned.html
../api/org/checkerframework/checker/signedness/qual/SignednessGlb.html
../api/org/checkerframework/checker/signedness/qual/SignedPositive.html
../api/org/checkerframework/checker/signedness/qual/PolySigned.html
../api/org/checkerframework/checker/signedness/qual/PolySigned.html
../api/org/checkerframework/checker/signedness/qual/UnknownSignedness.html
../api/org/checkerframework/checker/signedness/qual/SignednessBottom.html
../api/org/checkerframework/checker/signedness/qual/Unsigned.html
../api/org/checkerframework/checker/signedness/qual/SignednessGlb.html
../api/org/checkerframework/checker/signedness/qual/Unsigned.html
../api/org/checkerframework/checker/signedness/qual/Unsigned.html
../api/org/checkerframework/checker/signedness/qual/Signed.html

Consider the following Java code:

public class SignednessManualExample {

int sl -2;
int s2 = -1;

@Unsigned int ul = 2147483646; // unsigned: 2732 - 2, signed: -2
@Unsigned int u2 2147483647; // unsigned: 2732 - 1, signed: -1

void m() {
int w s2; // OK: result is 2, which is correct for -2 / -1
int x = ul / u2; // ERROR: result is 2, which is incorrect for (2732 - 2) / (2732 - 1)

Il
9]
—
~

int s3 = -1;
int s4 5;

@Unsigned int u3 = 2147483647; // unsigned: 2732 - 1, signed: -1
@Unsigned int ud4 = 5;

void m2 () {
int y = s3 % s4; // OK: result is -1, which is correct for -1 % 5
int z = u3 % u4; // ERROR: result is -1, which is incorrect for (2732 - 1) % 5 =2

These examples illustrate why division and modulus with an unsigned operand are illegal. Other uses of operators
are prohibited for similar reasons.

20.2.2 Permitted shifts

As exceptions to the rules given above, the Signedness Checker permits certain right shifts which are immediately
followed by a cast or masking operation.

For example, right shift by 8 then mask by OxFF evaluates to the same value whether the argument is interpreted as
signed or unsigned. Thus, the Signedness Checker permits both ((myInt >> 8) & 0xFF) and ((myInt >>> 8) & OxFF),
regardless of the qualifier on the type of myInt.

Likewise, right shift by 8 then cast to byte evaluates to the same value whether the argument is interpreted as
signed or unsigned, so the Signedness Checker permits both (byte) (myInt >> 8) and (byte) (myInt >>> 8),
regardless of the type of myInt.

20.3 Utility routines for manipulating unsigned values

Class SignednessUtil|provides static utility methods for working with unsigned values. They are properly annotated
with |@Unsigned where appropriate, so using them may reduce the number of annotations that you need to write. To use
the |SignednessUtil|class, the checker-util. jar file must be on the classpath at run time.

Class|SignednessUtilExtra contains more utility methods that reference packages not included in Android. This
class is not included in checker-util. jar, so you may want to copy the methods to your code.

139

../api/org/checkerframework/checker/signedness/util/SignednessUtil.html
../api/org/checkerframework/checker/signedness/qual/Unsigned.html
../api/org/checkerframework/checker/signedness/util/SignednessUtil.html
../api/org/checkerframework/checker/signedness/util/SignednessUtilExtra.html

’ jdk.jfr.Unsigned ‘ = org.checkerframework.checker.signedness.qual.Unsigned

Figure 20.2: Correspondence between other signedness annotations and the Checker Framework’s annotations.

20.4 Local type refinement

Local type refinement/inference (Section [31.7) may be surprising for the Signedness type system. Ordinarily, an
expression with unsigned type may not participate in a division, as shown in Sections and However, if a
constant is assigned to a variable that was declared with @Unsigned type, then — just like the constant — the variable
may be treated as either signed or unsigned. For example, it can participate in division. Since the result of the division
is signed, you cannot accidentally assign the division result to an @Unsigned variable.

void uselLocalVariables() {

int sl = -2;
int s2 -1;

@Unsigned int ul
@Unsigned int u2

2147483646; // unsigned: 2732 - 2, signed: -2
2147483647; // unsigned: 2732 - 1, signed: -1

int w sl / s2; // OK: result is 2, which is correct for -2 / -1
int x = ul / u2; // OK; computation over constants, interpreted as signed; result is

}

Note that type-checking produces a different result for int x = ul / u2; here than in the similar example in
Section [20.2.1] In Section[20.2.1} the method is reading fields, and all it knows is the declared type of the field. In 20.4,
the method is reading a local variable, and dataflow (that is, flow-sensitive type refinement) refines the types of local
variables.

20.5 Other signedness annotations

The Checker Framework’s signedness annotations are similar to annotations used elsewhere.

If your code is already annotated with a different annotation, the Checker Framework can type-check your code. It
treats annotations from other tools as if you had written the corresponding annotation from the Signedness Checker, as
described in Figure [20.2

140

signed

Chapter 21

Purity Checker

The Purity Checker identifies methods that have no side effects, that return the same value each time they are called on
the same argument, or both.

Purity analysis aids type refinement (Section [31.7).

All checkers utilize purity annotations on called methods. You do not need to run the Purity Checker directly.
However you may run just the Purity Checker by supplying the following command-line options to javac: -processor
org.checkerframework.framework.util.PurityChecker.

The Checker Framework can infer purity annotations. If you supply the command-line option -AsuggestPureMethods,
then the Checker Framework will suggest methods that can be marked as €SideEffectFree, @Deterministic, or
@Pure. In addition, such suggestions are output by ~Ainfer and when using whole-program inference.

21.1 Purity annotations

@SideEffectFree indicates that the method has no externally-visible side effects.

@Deterministic indicates that if the method is called multiple times with identical arguments, then it returns the
identical result according to == (not just according to equals()).

QPure indicates that the method is both @SideEffectFree and @Deterministic.

21.2 Purity annotations are trusted

By default, purity annotations are trusted. Purity annotations on called methods affect type-checking of client code.
However, you can make a mistake by writing €SideEffectFree on the declaration of a method that is not actually
side-effect-free or by writing @Deterministic on the declaration of a method that is not actually deterministic.

To enable checking of the annotations, supply the command-line option -AcheckPurityAnnotations. It is
not enabled by default because of a high false positive rate. In the future, after a new purity-checking analysis is
implemented, the Checker Framework will default to checking purity annotations.

21.3 Overriding methods must respect specifications in superclasses

If a method in a superclass has a purity annotation, then every overriding definition must also have that purity annotation
(or a stronger one).

Here is an example error if this requirement is violated:
MyClass.java:1465: error: int hashCode() in MyClass cannot override int hashCode (Object this) in java.lang.Object;

attempting to use an incompatible purity declaration
public int hashCode () {

N

141

../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/Deterministic.html
../api/org/checkerframework/dataflow/qual/Pure.html

found (]
required: [SIDE_EFFECT_FREE, DETERMINISTIC]

The reason for the error is that the Ob ject class is annotated as:

class Object {

@Pure int hashCode() { ... }
}

(where @Pure means both @SideEffectFree and @Deterministic). Every overriding definition, including those
in your program, must use be at least as strong a specification. For hashCode, every overriding definition must be
annotated as @Pure.

You can fix the definition by adding @Pure to your method definition. Alternately, you can suppress the warning.
You can suppress each such warning individually using @SuppressWarnings ("purity.overriding"), or you can
use the -AsuppressWarnings=purity.overriding command-line argument to suppress all such warnings. In the
future, the Checker Framework will support inheriting annotations from superclass definitions.

21.4 Suppressing warnings

The command-line options -AassumeSideEffectFree, ~AassumeDeterministic, ~AassumePure make the Checker
Framework unsoundly assume that every called method is side-effect-free, is deterministic, or is both, respectively. This
can make flow-sensitive type refinement much more effective, since method calls will not cause the analysis to discard
information that it has learned. However, this option can mask real errors. It is most appropriate when you are starting
out annotating a project, or if you are using the Checker Framework to find some bugs but not to give a guarantee that
no more errors exist of the given type.

142

../api/org/checkerframework/dataflow/qual/Pure.html
../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/Deterministic.html

Chapter 22

Constant Value Checker

The Constant Value Checker is a constant propagation analysis: for each variable, it determines whether that variable’s
value can be known at compile time.
There are two ways to run the Constant Value Checker.

o Typically, it is automatically run by another type checker.
e Alternately, you can run just the Constant Value Checker, by supplying the following command-line options to
javac: -processor org.checkerframework.common.value.ValueChecker

22.1 Annotations

The Constant Value Checker uses type annotations to indicate the value of an expression (Section[22.1.1)), and it uses
method annotations to indicate methods that the Constant Value Checker can execute at compile time (Section [22.2.2).

22.1.1 Type Annotations

Typically, the programmer does not write any type annotations. Rather, the type annotations are inferred by the Constant
Value Checker. The programmer is also permitted to write type annotations. This is only necessary in locations where
the Constant Value Checker does not infer annotations: on fields and method signatures.

The main type annotations are |€BoolVall |@IntVal, @IntRange, @DoubleVall |@StringVal, @MatchesRegex,
@DoesNotMatchRegex, and @EnumVal. Additional type annotations for arrays and strings are @ArrayLen, @ArrayLenRange,
and@MinLen, A polymorphic qualifier (€PolyValue) is also supported (see Section[30.2). In addition, there are separate
checkers for|¢ClassVal and [€MethodVallannotations (see Section [24.2)).

Each *Val type annotation takes as an argument a set of values, and its meaning is that at run time, the expression
evaluates to one of the values. For example, an expression of type @StringVal/("a", "b") evaluates to one of the
values "a", "b", or null. The set is limited to 10 entries; if a variable could be more than 10 different values, the
Constant Value Checker gives up and its type becomes @IntRange|for integral types, @ArrayLenRange| for array
types, @MatchesRegex, @DoesNotMatchRegex, |@ArrayLen, or |@ArrayLenRange|for String, and @UnknownVal for
all other types. The @ArrayLen annotation means that at run time, the expression evaluates to an array or a string whose
length is one of the annotation’s arguments.

In the case of too many strings in @StringVal, the values are forgotten and just the lengths are used in @ArrayLen.
If this would result in too many lengths, only the minimum and maximum lengths are used in @ArrayLenRange, giving
a range of possible lengths of the string.

The @StringVal, @MatchesRegex, and @DoesNotMatchRegex annotations may be applied to char arrays. Al-
though byte arrays are often converted to/from strings, these annotations may not be applied to them. This is because
the conversion depends on the platform’s character set.

The @MatchesRegex and @DoesNotMatchRegex annotations use the standard Java regular expression syntax.
@MatchesRegex (A) is only a subtype of @MatchesRegex (B) if the set of regular expressions A is a subset of the set of

143

../api/org/checkerframework/common/value/qual/BoolVal.html
../api/org/checkerframework/common/value/qual/IntVal.html
../api/org/checkerframework/common/value/qual/IntRange.html
../api/org/checkerframework/common/value/qual/DoubleVal.html
../api/org/checkerframework/common/value/qual/StringVal.html
../api/org/checkerframework/common/value/qual/MatchesRegex.html
../api/org/checkerframework/common/value/qual/DoesNotMatchRegex.html
../api/org/checkerframework/common/value/qual/EnumVal.html
../api/org/checkerframework/common/value/qual/ArrayLen.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html
../api/org/checkerframework/common/value/qual/MinLen.html
../api/org/checkerframework/common/value/qual/PolyValue.html
../api/org/checkerframework/common/reflection/qual/ClassVal.html
../api/org/checkerframework/common/reflection/qual/MethodVal.html
../api/org/checkerframework/common/value/qual/StringVal.html
../api/org/checkerframework/common/value/qual/IntRange.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html
../api/org/checkerframework/common/value/qual/MatchesRegex.html
../api/org/checkerframework/common/value/qual/DoesNotMatchRegex.html
../api/org/checkerframework/common/value/qual/ArrayLen.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html
../api/org/checkerframework/common/value/qual/UnknownVal.html

@unknownval
A

}@BoolVal(boolean[])| FIntRange(long,long) @IntVal(long[])| FDoubleVal(double[])| F@StringVal(string[])|

))

@ArrayLen(int[])| |@ArrayLenRange(int, int)

@Bottomval

|

FIntRange(from:G,to:zoo* FDoubleVal({@.o,1.0,2.0})| @DoesNotMatchRegex({”b*"})| l@MatcheSREQex({"a*"r ”b*"))|

>~ I G

@IntRange(from=6,to=1) | @Intval({1,2}) | @DoubleVal(1.0)| @boesNotMatchRegex({"a*", "b*"}))| | @MatchesRegex("a*")
A A

[@ArrayLenRange (0, 200)|

@ArrayLen({1,2})

l@stringVal({"a", "aa","b"})| | @ArraylLer
-@Intval(l) / \ /—

|@Stringval({“C“,“c0"})| |@StringVal({"a”,"aa“}4

astringval({"a","b"})

Figure 22.1: At the top, the type qualifier hierarchy of the Constant Value Checker annotations. The first four qualifiers
are applicable to primitives and their wrappers; the next to St rings (it can also be written as @EnumVal for enumeration
constants), and the final two to arrays. Qualifiers in gray are used internally by the type system but should never
be written by a programmer. At the bottom are examples of additional subtyping relationships that depend on the
annotations’ arguments.

regular expressions B. An @StringVal annotation is a subtype of an @MatchesRegex annotation if each string matches
at least one of the regular expressions. @DoesNotMatchRegex (A) is only a subtype of @MatchesRegex (B) if the set of
regular expressions A is a superset of the set of regular expressions B. Matching is done via the [java.lang.String#matches
method, which matches against the entire string (it does not look for a matching substring).

The @EnumVal annotation’s argument is the names of the enum constants that the type might evaluate to. (Java
syntax does not allow the enum constants themselves to be arguments.) @EnumVal is treated identically to @StringVal
by the checker internally, so @StringVal may appear in error messages related to enums.

@IntRange takes two arguments — a lower bound and an upper bound. Its meaning is that at run time, the expression
evaluates to a value between the bounds (inclusive). For example, an expression of type @IntRange (from=0, to=255)
evaluates to 0, 1, 2, ..., 254, or 255. An|@IntVal and|@IntRange|annotation that represent the same set of values
are semantically identical and interchangeable: they have exactly the same meaning, and using either one has the
same effect. @ArrayLenRange has the same relationship to @ArrayLen|that @ IntRange has to@IntVal, The @MinLen
annotation is an alias for @ArrayLenRange (meaning that every @MinLen annotation is automatically converted to an
@ArrayLenRange annotation) that only takes one argument, which is the lower bound of the range. The upper bound of
the range is the maximum integer value.

Figure 22.1] shows the subtyping relationship among the type annotations. For two annotations of the same type,
subtypes have a smaller set of possible values, as also shown in the figure. Because int can be casted to double, an
@IntVal annotation is a subtype of a @DoubleVal annotation with the same values.

Figure[22.2]illustrates how the Constant Value Checker infers type annotations (using flow-sensitive type qualifier
refinement, Section [31.7).

22.2 Other constant value annotations

The Checker Framework’s constant value annotations are similar to annotations used elsewhere.
If your code is already annotated with a different constant value or range annotation, the Checker Framework can

144

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#matches(java.lang.String)
../api/org/checkerframework/common/value/qual/IntRange.html
../api/org/checkerframework/common/value/qual/IntVal.html
../api/org/checkerframework/common/value/qual/IntRange.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html
../api/org/checkerframework/common/value/qual/ArrayLen.html
../api/org/checkerframework/common/value/qual/IntRange.html
../api/org/checkerframework/common/value/qual/IntVal.html

public void flowSensitivityExample (boolean b) {

int 1 = 1; // 1 has type: @IntvVal({l}) int
if (b) {
i=2; // 1 now has type: @IntVal({2}) int

// 1 now has type: @Intval({l,2}) int
1i=1+1; // 1 now has type: @Intval({2,3}) int

Figure 22.2: The Constant Value Checker infers different types for a variable on different lines of the program.

android.support.annotation.IntRange = org.checkerframework.checker.common.value.qual.IntRange

Figure 22.3: Correspondence between other constant value and range annotations and the Checker Framework’s
annotations.

type-check your code. It treats annotations from other tools as if you had written the corresponding annotation from
the Constant Value Checker, as described in Figure@} If the other annotation is a declaration annotation, it may be
moved; see Section [38.6.8]

The Constant Value Checker trusts the @Positive, @NonNegativel and |@GTENegativeOne annotations. If your
code contains any of these annotations, then in order to guarantee soundness, you must run the Index Checker whenever
you run the Constant Value Checker.

22.2.1 Compile-time execution of expressions

Whenever all the operands of an expression are compile-time constants (that is, their types have constant-value type
annotations), the Constant Value Checker attempts to execute the expression. This is independent of any optimizations
performed by the compiler and does not affect the code that is generated.

The Constant Value Checker statically executes (at compile time) operators that do not throw exceptions (e.g., +, -,
<<, =),

22.2.2 @StaticallyExecutable methods and the classpath

The Constant Value Checker statically executes (at compile time) methods annotated with @StaticallyExecutable,
The static execution feature has some requirements:

e A @StaticallyExecutable method must be|@Pure|(side-effect-free and deterministic).

@StaticallyExecutable QPure
public static int myAdd(int a, int b) {
return a + b;

public void bar() {
int a = 5; // a has type: @Intval({5}) int
int b = 4; // b has type: @IntVal({4}) int
int ¢ = myAdd(a, b); // c has type: QIntVal({9}) int

Figure 22.4: The|@StaticallyExecutable annotation enables constant propagation through method calls.

145

../api/org/checkerframework/checker/index/qual/Positive.html
../api/org/checkerframework/checker/index/qual/NonNegative.html
../api/org/checkerframework/checker/index/qual/GTENegativeOne.html
../api/org/checkerframework/common/value/qual/StaticallyExecutable.html
../api/org/checkerframework/dataflow/qual/Pure.html
../api/org/checkerframework/common/value/qual/StaticallyExecutable.html

e The Constant Value Checker must have an estimate for all the arguments at a call site.

This means that @StaticallyExecutable is not applicable to user-written instance methods. It is only applicable
to instance methods whose receiver is a compile-time constant, such as a primitive wrapper or an array.

e The @StaticallyExecutable method and any method it calls must be on the same path (the classpath or the
processorpath) as the Checker Framework. This is because the Constant Value Checker reflectively calls these
methods at compile time.

To use @StaticallyExecutable on methods in your own code, you should first compile the code without the
Constant Value Checker and then add the location of the resulting . class files to the classpath or processorpath,
whichever is appropriate. For example, the command-line arguments to the Checker Framework might include:

-processor org.checkerframework.common.value.ValueChecker
—-classpath $CLASSPATH:MY_PROJECT/build/

or

-processor org.checkerframework.common.value.ValueChecker
-processorpath ${CHECKERFRAMEWORK}/checker/build/libs/checker-3.6.1-SNAPSHOT. jar:MY_PROJECT/build/

22.3 Warnings

If the option -AreportEvalWarns options is used, the Constant Value Checker issues a warning if it cannot load and
run, at compile time, a method marked as @StaticallyExecutable. If it issues such a warning, then the return value
of the method will be @UnknownVal instead of being able to be resolved to a specific value annotation. Some examples
of these:

e [class.find.failed] Failed to find class named Test.
The checker could not find the class specified for resolving a @StaticallyExecutable method. Typically this
means that the path that contains the Checker Framework (the classpath or the processorpath) lacks the given
classfile.

e [method.find.failed] Failed to find a method named foo with argument types [@IntVal (3)
int].
The checker could not find the method foo (int) specified for resolving a @StaticallyExecutable method,
but could find the class. This is usually due to providing an outdated version of the classfile that does not contain
the method that was annotated as @StaticallyExecutable.

e [method.evaluation.exception] Failed to evaluate method public static int Test.foo (int)
because it threw an exception: Jjava.lang.ArithmeticException: / by zero.
An exception was thrown when trying to statically execute (at compile time) the method. In this case it was a
divide-by-zero exception. If the arguments to the method each only had one value in their annotations then this
exception will always occur when the program is actually run as well. If there are multiple possible values then
the exception might not be thrown on every execution, depending on the run-time values.

There are some other situations in which the Constant Value Checker produces a warning message:

e [too.many.values.given] The maximum number of arguments permitted is 10.
The Constant Value Checker only tracks up to 10 possible values for an expression. If you write an annotation
with more values than will be tracked, the annotation is replaced with @IntRange, @ArrayLen, @ArrayLenRange,
or @UnknownVal.

22.4 Unsoundly ignoring overflow

The Constant Value Checker takes Java’s overflow rules into account when computing the possible values of expres-
sions. The -AignoreRangeOverflow command-line option makes it ignore the possibility of overflow for range

146

if (1 > 5) {
// 1 now has type: @IntRange (from=5, to=Integer.MAX_VALUE)
i=1+1;
// If i started out as Integer.MAX_VALUE, then i is now Integer.MIN_VALUE.
// i's type is now @IntRange (from=Integer.MIN_VALUE, to=Integer.MAX_ VALUE) .
// When ignoring overflow, i’s type is now @IntRange (from=6, to=Integer.MAX VALUE) .

Figure 22.5: With the -AignoreRangeOverflow command-line option, the Constant Value Checker ignores overflow
for range types, which gives smaller ranges to range types.

annotations @ IntRange| and @ArrayLenRangel Figure 22.5] gives an example of behavior with and without the
-AignoreRangeOverflow command-line option.

As with any unsound behavior in the Checker Framework, this option reduces the number of warnings and errors
produced, and may reduce the number of @IntRange qualifiers that you need to write in the source code. However, it
is possible that at run time, an expression might evaluate to a value that is not in its @ IntRange qualifier. You should
either accept that possibility, or verify the lack of overflow using some other tool or manual analysis.

22.5 Strings can be null in concatenations

By default, the Constant Value Checker is sound with respect to string concatenation and nullness. It assumes that, in a
string concatenation, every non-primitive argument might be null, except for String literals and compile-time constants.
It ignores Nullness Checker annotations. (This behavior is conservative but sound.)

Consider a variable declared as @StringVal|("a", "b") String x;. Atrun time, x evaluates to one of the values
"a", "b", or null. Therefore, the type of “x + "c"”is @StringVal ("ac", "bc", "nullc") String.

The -AnonNullStringsConcatenation command-line option makes the Constant Value Checker unsoundly
assume that no arguments in a string concatenation are null. With the command-line argument, the type of “x + "c"”
is @StringVal ("ac", "bc") String.

147

../api/org/checkerframework/common/value/qual/IntRange.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html
../api/org/checkerframework/common/value/qual/StringVal.html

Chapter 23

Returns Receiver Checker

The Returns Receiver Checker enables documenting and checking that a method returns its receiver (i.e., the this
parameter).
There are two ways to run the Returns Receiver Checker.

e Typically, it is automatically run by another checker.
If the code being checked does not use fluent APIs, you can pass the -AdisableReturnsReceiver command-line
option. This disables the Returns Receiver Checker and makes the other checker run faster.

e Alternately, you can run just the Returns Receiver Checker, by supplying the following command-line options to
javac: -processor org.checkerframework.common.returnsreceiver.ReturnsReceiverChecker

23.1 Annotations

The qualifier @This on the return type of a method indicates that the method returns its receiver. Methods that return
their receiver are common in so-called “fluent” APIs. Here is an example:

class MyBuilder {
@This MyBuilder setName (String name) {
this.name = name;
return this;

An @This annotation can only be written on a return type, a receiver type, or in a downcast.

As is standard, the Returns Receiver Checker has a top qualifier, @UnknownThis, and a bottom qualifier, @Bot tomThis.
Programmers rarely need to write these annotations.

Here are additional details. @This|is a polymorphic qualifier rather than a regular type qualifier (see Section [30.2).
Conceptually, a receiver type always has an |@This qualifier. When a method return type also has an|@This|qualifier,
the presence of the polymorphic annotation on both the method’s return and receiver type forces their type qualifiers to
be equal. Hence, the method will only pass the type checker if it returns its receiver argument, achieving the desired
checking.

23.2 AutoValue and Lombok Support

The |AutoValue|and Lombok projects both support automatic generation of builder classes, which enable flexible
object construction. For code using these two frameworks, the Returns Receiver Checker automatically adds @This
annotations to setter methods in builder classes. All the ¢This annotations in Figures[23.1)and [23.2] are automatically
added by the Returns Receiver Checker.

148

../api/org/checkerframework/common/returnsreceiver/qual/This.html
../api/org/checkerframework/common/returnsreceiver/qual/This.html
../api/org/checkerframework/common/returnsreceiver/qual/UnknownThis.html
../api/org/checkerframework/common/returnsreceiver/qual/BottomThis.html
../api/org/checkerframework/common/returnsreceiver/qual/This.html
../api/org/checkerframework/common/returnsreceiver/qual/This.html
../api/org/checkerframework/common/returnsreceiver/qual/This.html
https://github.com/google/auto/tree/master/value
https://projectlombok.org/

@Autovalue
abstract class Animal {
abstract String name();
abstract int numberOfLegs();
static Builder builder() {
return new AutoValue_Animal.Builder();
}
@AutoValue.Builder
abstract static class Builder {
abstract Builder setName (String value); // @This is automatically added here
abstract Builder setNumberOfLegs (int value); // @This is automatically added here
abstract Animal build();

Figure 23.1: User-written code that uses the @AutoValue.Builder annotation. Given this code, (1) AutoValue
automatically generates a concrete subclass of Animal.Builder, see Figure[23.2} and (2) the Returns Receiver Checker
automatically adds @This annotations on setters in both user-written and automatically-generated code.

class AutoValue_Animal {
static final class Builder extends Animal.Builder {
private String name;
private Integer numberOfLegs;
@This Animal.Builder setName (String name) {
this.name = name;
return this;

}
@This Animal.Builder setNumberOfLegs (int numberOflLegs) {

this.numberOfLegs = numberOflegs;
return this;

}

@Override
Animal build() {
return new AutoValue_Animal (this.name, this.numberOflegs);

Figure 23.2: Code generated by AutoValue for the example of Figure 23.1] including the @This annotations added by
the Returns Receiver Checker.

149

Chapter 24

Reflection resolution

A call to Method. invoke/might reflectively invoke any method. That method might place requirements on its formal
parameters, and it might return any value. To reflect these facts, the annotated JDK contains conservative annotations
for Method. invoke. These conservative library annotations often cause a checker to issue false positive warnings when
type-checking code that uses reflection.

If you supply the -AresolveReflection command-line option, the Checker Framework attempts to resolve
reflection. At each call to Method. invoke or Constructor.newInstance, the Checker Framework first soundly
estimates which methods might be invoked at run time. When type-checking the call, the Checker Framework uses the
library annotations for the possibly-invoked methods, rather than the imprecise one for Method. invoke.

If the estimate of invoked methods is small, the checker issues fewer false positive warnings. If the estimate of
invoked methods is large, these types may be no better than the conservative library annotations.

Reflection resolution is disabled by default, because it increases the time to type-check a program. You should enable
reflection resolution with the ~AresolveReflection command-line option if, for some call site of Method. invoke or
Constructor.newInstance in your program:

1. the conservative library annotations on Method.invoke or Constructor.newInstance cause false positive
warnings,

2. the set of possibly-invoked methods or constructors can be known at compile time, and

3. the reflectively invoked methods/constructors are on the class path at compile time.

Reflection resolution does not change your source code or generated code. In particular, it does not replace the
Method. invoke or Constructor.newInstance calls.

The command-line option -AresolveReflection=debug outputs verbose information about the reflection resolu-
tion process, which may be useful for debugging.

Section [24.1] gives an example of reflection resolution. Then, Section[24.2]describes the MethodVal and ClassVal
Checkers, which reflection resolution uses internally. The paper “Static analysis of implicit control flow: Resolving
Java reflection and Android intents” [BIM™15]] (ASE 2015, https://homes.cs.washington.edu/~mernst/pubs/
implicit-control-flow-ase2015-abstract.html) gives further details.

24.1 Reflection resolution example

Consider the following example, in which the Nullness Checker employs reflection resolution to avoid issuing a false
positive warning.

public class LocationInfo {
@NonNull Location getCurrentLocation() { ... }

150

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/reflect/Method.html#invoke(java.lang.Object,java.lang.Object...)
https://homes.cs.washington.edu/~mernst/pubs/implicit-control-flow-ase2015-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/implicit-control-flow-ase2015-abstract.html

public class Example {
LocationInfo privatelLocation = ... ;
String getCurrentCity () throws Exception {
Method getCurrentLocationObj = LocationInfo.class.getMethod("getCurrentLocation");
Location currentLocation = (Location) getCurrentLocationObj.invoke (privatelLocation);
return currentLocation.nameOfCity();

‘When reflection resolution is not enabled, the Nullness Checker uses conservative annotations on the Method. invoke
method signature:
@Nullable Object invoke (@NonNull Object recv, @NonNull Object ... args)
This causes the Nullness Checker to issue the following warning even though currentLocation cannot be null.

error: [dereference.of.nullable] dereference of possibly-null reference currentLocation
return currentLocation.nameOfCity();

A

1 error

When reflection resolution is enabled, the MethodVal Checker infers that the @Methodval annotation for
getCurrentLocationObj is:
@MethodvVal (className="LocationInfo", methodName="getCurrentLocation", params=0)
Based on this @MethodVal annotation, the reflection resolver determines that the reflective method call represents
a call to getCurrentLocation in class LocationInfo. The reflection resolver uses this information to provide the
following precise procedure summary to the Nullness Checker, for this call site only:
@NonNull Object invoke (@NonNull Object recv, @Nullable Object ... args)
Using this more precise signature, the Nullness Checker does not issue the false positive warning shown above.

24.2 MethodVal and ClassVal Checkers

The implementation of reflection resolution internally uses the ClassVal Checker (Section[24.2.T)) and the Method Val
Checker (Section [24.2.2)). They are similar to the Constant Value Checker (Section[22)) in that their annotations estimate
the run-time value of an expression.

In some cases, you may need to write annotations such as|@ClassVall @Methodval,|@StringVal, and @ArrayLen
to aid in reflection resolution. Often, though, these annotations can be inferred (Section @])

24.2.1 ClassVal Checker

The ClassVal Checker defines the following annotations:

@ClassVal (String[] wvalue) If an expression has @ClassVal type with a single argument, then its exact
run-time value is known at compile time. For example, @ClassVal ("java.util.HashMap") indicates that the
Class object represents the java.util.HashMap class.

If multiple arguments are given, then the expression’s run-time value is known to be in that set.
Each argument is a “fully-qualified binary name” (€FgBinaryName): a primitive or binary name (JLS §13.1),
possibly followed by array brackets.

@ClassBound (String[] wvalue) If an expression has @ClassBound type, then its run-time value is known to
be upper-bounded by that type. For example, @ClassBound ("java.util.HashMap") indicates that the Class
object represents java.util.HashMap or a subclass of it.

If multiple arguments are given, then the run-time value is equal to or a subclass of some class in that set.
Each argument is a “fully-qualified binary name” (€FgBinaryName): a primitive or binary name (JLS §13.1),
possibly followed by array brackets.

151

../api/org/checkerframework/common/reflection/qual/ClassVal.html
../api/org/checkerframework/common/reflection/qual/MethodVal.html
../api/org/checkerframework/common/value/qual/StringVal.html
../api/org/checkerframework/common/value/qual/ArrayLen.html
../api/org/checkerframework/common/reflection/qual/ClassVal.html
../api/org/checkerframework/checker/signature/qual/FqBinaryName.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-13.html#jls-13.1
../api/org/checkerframework/common/reflection/qual/ClassBound.html
../api/org/checkerframework/checker/signature/qual/FqBinaryName.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-13.html#jls-13.1

@UnknownClass
A

@ClassBound({"java.lang.String", "com.example.MyClass"})

/\

@Classval({"java.lang.String", "com.example.MyClass"}) |@ClassBound("java.lang.String")

\/

@ClassVal("java.lang.String")

T

@ClassValBottom

Figure 24.1: Partial type hierarchy for the ClassVal type system. The type qualifiers in gray (€UnknownClass and
@ClassValBottom) should never be written in source code; they are used internally by the type system.

QUnknownClass Indicates that there is no compile-time information about the run-time value of the class — or that
the Java type is not Class. This is the default qualifier, and it may not be written in source code.
@ClassValBottom Type given to the null literal. It may not be written in source code.

Subtyping rules

Figure [24.1|shows part of the type hierarchy of the ClassVal type system. @ClassVal (&) is a subtype of @ClassVal (B)
if A is a subset of B. @ClassBound (A) is a subtype of @ClassBound (B) if A is a subset of B. @ClassVal (A) is a
subtype of @ClassBound (B) if A is a subset of B.

24.2.2 MethodVal Checker

The MethodVal Checker defines the following annotations:

@Methodval (String[] className, String[] methodName, int[] params) Indicatesthatan ex-
pression of type Method or Constructor has a run-time value in a given set. If the set has size n, then each of
@Methodval’s arguments is an array of size n, and the ith method in the set is represented by { classNamelJi],
methodName[i], params[i] }. For a constructor, the method name is “<init>".

Consider the following example:

@MethodVal (className={"java.util.HashMap", "java.util.HashMap"},
methodName={"containsKey", "containsValue"},
params={1, 1})

This @MethodVal annotation indicates that the Method is either HashMap.containsKey with 1 formal parameter
or HashMap.containsValue with 1 formal parameter.

The @MethodVal type qualifier indicates the number of parameters that the method takes, but not their type. This
means that the Checker Framework’s reflection resolution cannot distinguish among overloaded methods.
@QUnknownMethod Indicates that there is no compile-time information about the run-time value of the method — or

that the Java type is not Method or Constructor. This is the default qualifier, and it may not be written in source
code.
@MethodValBottom Type given to the null literal. It may not be written in source code.

152

../api/org/checkerframework/common/reflection/qual/UnknownClass.html
../api/org/checkerframework/common/reflection/qual/ClassValBottom.html
../api/org/checkerframework/common/reflection/qual/MethodVal.html
../api/org/checkerframework/common/reflection/qual/UnknownMethod.html
../api/org/checkerframework/common/reflection/qual/MethodValBottom.html

@UnknownMethod

@Methodval(className={"java.lang.String", "java.lang.String"}, methodName={"toString", "equals"}, params={0,1})

i

@MethodVal(className="java.lang.String",methodName="equals",params=14

t

|@MethodValBottom|

Figure 24.2: Partial type hierarchy for the MethodVal type system. The type qualifiers in gray (@UnknownMethod and
@MethodValBottom) should never be written in source code; they are used internally by the type system.

bn is the binary name of C
C.class:@ClassVal (bn)

s:@StringVal (V)
Class.forName (s) : @ClassVal (V)

e:T bnis the binary name of ©
e.getClass () : @ClassBound (bn)

(e:@ClassBound (V) V e:@ClassVal(Vv))
s : @StringVal(u) p : @ArrayLen(m)

e.getMethod (s, p) : @MethodVal (cn=v, mn=u, np=T)

e:@ClassVal(v) p:@ArrayLen(m)
e.getConstructor (p) : @MethodVal (cn=v,mn = "<init>" np =)

Figure 24.3: Example inference rules for @ClassVal, @ClassBound, and @MethodVal. Additional rules exist for
expressions with similar semantics but that call methods with different names or signatures.

Subtyping rules

Figure[24.2]shows part of the type hierarchy of the MethodVal type system. @MethodVal (classname=CA, methodname=MA,
params=PA) is a subtype of @MethodVal (classname=CB, methodname=MB, params=PB) if

Vindexesidan index j : CA[i] = CBJj],MA[i] = MA[j],andPA[i] = PB][}]

where CA, MA, and PA are lists of equal size and CB, MB, and PB are lists of equal size.

24.2.3 MethodVal and ClassVal inference

The developer rarely has to write @ClassVal or @MethodVal annotations, because the Checker Framework infers them
according to Figure Most readers can skip this section, which explains the inference rules.

The ClassVal Checker infers the exact class name (€ClassVal) fora Class literal (C.class), and for a static method
call (e.g., Class.forName (arg), ClassLoader.loadClass (arg), ...) if the argument is a statically computable
expression. In contrast, it infers an upper bound (@ClassBound) for instance method calls (e.g., obj.getClass ()).

The MethodVal Checker infers @Methodval annotations for Method and Constructor types that have been created
using a method call to Java’s Reflection API:

e Class.getMethod(String name, Class<?>... paramIypes)
e Class.getConstructor (Class<?>... paramTypes)

153

Note that an exact class name is necessary to precisely resolve reflectively-invoked constructors since a constructor
in a subclass does not override a constructor in its superclass. This means that the MethodVal Checker does not infer a
@MethodVal annotation for Class.getConstructor if the type of that class is @ClassBound. In contrast, either an
exact class name or a bound is adequate to resolve reflectively-invoked methods because of the subtyping rules for
overridden methods.

154

Chapter 25

Initialized Fields Checker

The Initialized Fields Checker warns if a constructor does not initialize a field.

25.1 Running the Initialized Fields Checker

An example invocation is
javac -processor org.checkerframework.common.initializedfields.InitializedFieldsChecker MyFile. java

If you run it together with other checkers, then it issues warnings only if the default value assigned by Java (0, false,
or null) is not consistent with the field’s annotation, for the other checkers. An example invocation is

javac -processor ValueChecker,InitializedFieldsChecker MyFile.java

25.2 Motivation: uninitialized fields

Without the Initialized Fields Checker, every type system is unsound with respect to fields that are never set. (Exception:
The Nullness Checker (Chapter 3] page [30) is sound. Also, a type system is sound if every annotation is consistent with
0, false, and null.) Consider the following code:

import org.checkerframework.checker.index.qual.Positive;

class MyClass {
@Positive int x;
MyClass () {
// empty body
}

@Positive int getX() {
return x;
}
}

Method getX is incorrect because it returns 0, which is not positive. However, the code type-checks because there is
never an assignment to x whose right-hand side is not positive. If you run the Index Checker together with the Initialized
Fields Checker, then the code correctly does not type-check.

155

Remaining unsoundness

Even with the Initialized Fields Checker, every type system (except the Nullness Checker, Chapter [3| page [30) is
unsound with respect to partially-initialized fields. Consider the following code:

import org.checkerframework.checker.index.qual.Positive;

class MyClass {
@Positive int x;
MyClass () {
foo(this);
X =1;

@Positive int foo() {
// ... use x, expecting it to be positive ...

}

Within method foo, x can have the value 0 even though the type of x is @Positive int.

25.3 Example

As an example, consider the following code:

import org.checkerframework.checker.index.qual.Positive;
class MyClass {

@Positive int x;
@Positive int y;
int z;

// Warning: field y is not initialized
MyClass () {
x =1;

When run by itself, the Initialized Fields Checker warns that fields y and field z are not set.
When run together with the Index Checker, the Initialized Fields Checker warns that field y is not set. It does not
warn about field z, because its default value (0) is consistent with its annotations.

25.4 Annotations

The Initialized Fields type system uses the following type annotations:

RInitializedFields| indicates which fields have definitely been initialized so far.

@RInitializedFieldsBottom is the type of null. Programmers rarely write this type.

QPolyInitializedFields) is a qualifier that is polymorphic over field initialization. For a description of qualifier
polymorphism, see Section [30.2}

156

../api/org/checkerframework/common/initializedfields/qual/InitializedFields.html
../api/org/checkerframework/common/initializedfields/qual/InitializedFieldsBottom.html
../api/org/checkerframework/common/initializedfields/qual/PolyInitializedFields.html

@InitializedFields()

TN

@InitializedFields("a")| |@Initializedfields("b")

~ 7

@Initializedfields({"a", "b"})

)

@InitializedfieldsBottom

Figure 25.1: The type qualifier hierarchy of the Initialized Fields Checker. @InitializedFieldsBotton is rarely
written by a programmer.

Figure[25.1] shows the subtyping relationships among the type qualifiers.
There is also a method declaration annotation:

REnsuresInitializedFields! indicates which fields the method sets. Use this for helper methods that are
called from a constructor.

25.5 Comparison to the Initialization Checker

The Initialized Fields Checker is a lightweight version of the Initialization Checker (Section [3.8). Here is a comparison
between them.

Initialization Checker Initialized Fields Checker
superclasses tracks initialization of supertype fields checks one class at a time
partial initialization | changes the types of fields that are not initialized | unsound treatment of partially-initialized objects (*)
type systems works only with the Nullness Checker (**) works for any type system
disabling always runs with the Nullness Checker can be enabled/disabled per run

* See Section[25.2]for an example.
** The Initialization Checker could be made to work with any type system, but doing so would require changing the implementation
of both the type system and the Initialization Checker.

157

../api/org/checkerframework/common/initializedfields/qual/EnsuresInitializedFields.html

Chapter 26

Aliasing Checker

The Aliasing Checker identifies expressions that definitely have no aliases.

Two expressions are aliased when they have the same non-primitive value; that is, they are references to the identical
Java object in the heap. Another way of saying this is that two expressions, exprA and exprB, are aliases of each other
when exprA==exprB at the same program point.

Assigning to a variable or field typically creates an alias. For example, after the statement a = Db;, the variables a
and b are aliased.

Knowing that an expression is not aliased permits more accurate reasoning about how side effects modify the
expression’s value.

To run the Aliasing Checker, supply the -processor org.checkerframework.common.aliasing.AliasingChecker
command-line option to javac. However, a user rarely runs the Aliasing Checker directly. This type system is mainly
intended to be used together with other type systems. For example, the SPARTA information flow type-checker
(Section [29.20) uses the Aliasing Checker to improve its type refinement — if an expression has no aliases, a more
refined type can often be inferred, otherwise the type-checker makes conservative assumptions.

26.1 Aliasing annotations
There are two possible types for an expression:

@MaybeAliased is the type of an expression that might have an alias. This is the default, so every unannotated type
is @MaybeAliased. (This includes the type of null.)

QUnique is the type of an expression that has no aliases.
The @Unique annotation is only allowed at local variables, method parameters, constructor results, and method
returns. A constructor’s result should be annotated with @Unique only if the constructor’s body does not creates
an alias to the constructed object.

There are also two annotations, which are currently trusted instead of verified, that can be used on formal parameters
(including the receiver parameter, this):

@MaybeAliased

T

@unique

Figure 26.1: Type hierarchy for the Aliasing type system. These qualifiers are applicable to any reference (non-primitive)
type.

158

../api/org/checkerframework/common/aliasing/qual/MaybeAliased.html
../api/org/checkerframework/common/aliasing/qual/Unique.html

@NonLeaked identifies a formal parameter that is not leaked nor returned by the method body. For example, the
formal parameter of the String copy constructor, String (String s), is @NonLeaked because the body of the
method only makes a copy of the parameter.

RLeakedToResult| is used when the parameter may be returned, but it is not otherwise leaked. For example,
the receiver parameter of StringBuffer.append(StringBuffer this, String s) is @LeakedToResult,
because the method returns the updated receiver.

26.2 Leaking contexts
This section lists the expressions that create aliases. These are also called “leaking contexts”.

Assignments After an assignment, the left-hand side and the right-hand side are typically aliased. (The only coun-
terexample is when the right-hand side is a fresh expression; see Section [26.4])

@Unique Object u = ...;
Object o = u; // (not.unique) type-checking error!

If this example type-checked, then u and o would be aliased. For this example to type-check, either the @Unique
annotation on the type of u, or the o = u; assignment, must be removed.

Method calls and returns (pseudo-assignments) Passing an argument to a method is a “pseudo-assignment” because
it effectively assigns the argument to the formal parameter. Return statements are also pseudo-assignments. As
with assignments, the left-hand side and right-hand side of pseudo-assignments are typically aliased.

Here is an example for argument-passing:

void mightDoAnything(Object o) { ... }

@QUnique Object u = ...;

mightDoAnything(u); // type-checking error, because the callee may create an alias of the passed a:
Passing a non-aliased reference to a method does not necessarily create an alias. However, the body of the
method might create an alias or leak the reference. Thus, the Aliasing Checker always treats a method call as
creating aliases for each argument unless the corresponding formal parameter is marked as @@NonLeaked| or
@QLeakedToResult.
Here is an example for a return statement:

Object id(@Unique Object p) {
return p; // (not.unique) type-checking error!
}
If this code type-checked, then it would be possible for clients to write code like this:
@Unique Object u = ...;
Object o = id(u);
after which there is an alias to u even though it is declared as @Unique.

However, it is permitted to write

Object id(@LeakedToResult Object p) {
return p;

}
after which the following code type-checks:

@Unique Object u = ...;

id(u); // method call result is not used
Object ol = ...;

Object 02 = id(ol); // argument is not QUnique

Throws A thrown exception can be captured by a catch block, which creates an alias of the thrown exception.

159

../api/org/checkerframework/common/aliasing/qual/NonLeaked.html
../api/org/checkerframework/common/aliasing/qual/LeakedToResult.html
../api/org/checkerframework/common/aliasing/qual/NonLeaked.html
../api/org/checkerframework/common/aliasing/qual/LeakedToResult.html

void aliasInCatchBlock () {
@Unique Exception uex = new Exception();
try {
throw uex; // (not.unique) type-checking error!
} catch (Exception ex) {
// uex and ex refer to the same object here.
}
}

Array initializers Array initializers assign the elements in the initializers to corresponding indexes in the array,
therefore expressions in an array initializer are leaked.

void aliasInArrayInitializer() {
@Unique Object o = new Object();
Object[] ar = new Object[] { o }; // (not.unique) type-checking error!
// The expressions o and ar[0] are now aliased.

26.3 Restrictions on where @Unique may be written

The @Unique qualifier may not be written on locations such as fields, array elements, and type parameters.
As an example of why @Unique may not be written on a field’s type, consider the following code:

class MyClass {
@Unique Object field;
void makesAlias () {
MyClass myClass2 = this;
// this.field is now an alias of myClass2.field

That code must not type-check, because field is declared as @Unique but has an alias. The Aliasing Checker
solves the problem by forbidding the @Unique qualifier on subcomponents of a structure, such as fields. Other solutions
might be possible; they would be more complicated but would permit more code to type-check.

@Unique may not be written on a type parameter for similar reasons. The assignment

List<@Unique Object> 11 = ...;
List<@Unique Object> 12 11;

must be forbidden because it would alias 11.get (0) with 12.get (0) even though both have type @Unique. The
Aliasing Checker forbids this code by rejecting the type List<@Unique Object>.

26.4 Aliasing type refinement

Type refinement enables a type checker to treat an expression as a subtype of its declared type. For example, even if you
declare a local variable as @MaybeAliased (or don’t write anything, since @MaybeAliased is the default), sometimes
the Aliasing Checker can determine that it is actually @Unique. For more details, see Section

The Aliasing Checker treats type refinement in the usual way, except that at (pseudo-)assignments the right-hand-
side (RHS) may lose its type refinement, before the left-hand-side (LHS) is type-refined. The RHS always loses its
type refinement (it is widened to @MaybeAliased, and its declared type must have been @MaybeAliased) except in the
following cases:

160

// Annotations on the StringBuffer class, used in the examples below.

// class StringBuffer {

// @Unique StringBuffer();

// StringBuffer append(@LeakedToResult StringBuffer this, @NonLeaked String s);

/)

void foo() {
StringBuffer sb = new StringBuffer(); // sb is refined to @Unique.
StringBuffer sb2 = sb; // sb loses its refinement.

// Both sb and sb2 have aliases and because of that have type @MaybeAliased.
}

void bar() {
StringBuffer sb = new StringBuffer(); // sb is refined to @Unique.

sb.append ("someString");
// sb stays @Unique, as no aliases are created.

StringBuffer sb2 = sb.append("someString");
// sb is leaked and becomes @MaybeAliased.

// Both sb and sb2 have aliases and because of that have type @MaybeAliased.

Figure 26.2: Example of the Aliasing Checker’s type refinement rules.

e The RHS is a fresh expression — an expression that returns a different value each time it is evaluated. In practice,
this is only method/constructor calls with @Unique return type. A variable/field is not fresh because it can return
the same value when evaluated twice.

e The LHS is a @NonLeaked formal parameter and the RHS is an argument in a method call or constructor
invocation.

e The LHS is a @LeakedToResult formal parameter, the RHS is an argument in a method call or constructor
invocation, and the method’s return value is discarded — that is, the method call or constructor invocation is
written syntactically as a statement rather than as a part of a larger expression or statement.

A consequence of the above rules is that most method calls are treated conservatively. If a variable with declared
type @MaybeAliased has been refined to @Unique and is used as an argument of a method call, it usually loses its
@Unique refined type.

Figure[26.2] gives an example of the Aliasing Checker’s type refinement rules.

161

Chapter 27

Must Call Checker

The Must Call Checker conservatively over-approximates the set of methods that an object should call before it is
de-allocated. The checker does not enforce any rules other than subtyping; in particular, it does not enforce that the
methods are called before objects are de-allocated. The Must Call Checker is intended to be run as a subchecker of
another checker. The primary client of the Must Call Checker is the Resource Leak Checker (Section[§), which enforces
that every method in a must-call obligation for an expression is called before that expression is de-allocated.

For example, consider a java.io.OutputStream. This OutputStream might have an obligation to call the
close () method, to release an underlying file resource. The type of this OutputStreamis @MustCall ({"close"}).
Or, the Output Stream might not have such an obligation, if the underlying resource is a byte array. The type of this
OutputStream is @MustCall ({}). For an arbitrary OutputStream, the Must Call Checker over-approximates the
methods that it should call by assigning it the type @MustCall ({"close"}) OutputStream, which can be read as “an
OutputStream that might need to call close () (but no other methods) before it is de-allocated”.

If you are running the Resource Leak Checker (Chapter[8] page[70), then there is no need to run the Must Call
Checker, because the Resource Leak Checker does so automatically. Running both may lead to warning suppressions
for the Must Call Checker not working.

27.1 Must Call annotations

The Must Call Checker supports these type qualifiers:

@MustCall|/(String[] value) gives a superset of the methods that must be called before the expression’s value
is de-allocated. The annotation is not refined after a method is called; an expression of type @MustCall ("foo")
might or might not have already had foo () called on it. The default type qualifier for an unannotated type is
@MustCall ({}).

@MustCallUnknownl represents a value with an unknown or infinite set of must-call obligations. It is used internally
by the type system but should never be written by a programmer.

@PolyMustCall is the polymorphic annotation for the Must Call type system. For a description of polymorphic
qualifiers, see Section [30.2]

@InheritableMustCall/(String[] wvalue) is an alias of @MustCall that can only be written on a class
declaration. It applies both to the class declaration on which it is written and also to all subclasses. This frees the
user of the need to write the @MustCall annotation on every subclass. See Section for details.

Here are some facts about the type qualifier hierarchy, which is shown in Figure Any expression of type
@MustCall ({}) Object also has type @MustCall({"foo"}) Object. The type @MustCall ({"foo"}) Object
contains objects that need to call foo and objects that need to call nothing, but the type does not contain an object that
needs to call bar (or both foo and bar). @MustCall ({"foo", "bar"}) Object represents all objects that need to
call foo, bar, both, or neither; it cannot not represent an object that needs to call some other method.

162

../api/org/checkerframework/checker/mustcall/qual/MustCall.html
../api/org/checkerframework/checker/mustcall/qual/MustCallUnknown.html
../api/org/checkerframework/checker/mustcall/qual/PolyMustCall.html
../api/org/checkerframework/checker/mustcall/qual/InheritableMustCall.html

@MustCallUnknown
A

@Mustca”({llfooll’ Ilbarll})

AN

@MustCall("foo") @MustCall("bar")

7

@MustCall({})

Figure 27.1: Part of the Must Call Checker’s type qualifier hierarchy. The full hierarchy contains one @MustCall
annotation for every combination of methods. Qualifiers in gray are used internally by the type system but should never
be written by a programmer.

27.2 Writing @MustCall/@InheritableMustCall on a class

As explained in Section[31.3] a type annotation on a type declaration means that every use of the type has that annotation
by default. If a class A’s declaration has a @MustCall annotation, then A’s subclasses usually should too. To do so, a
programmer can either write a @MustCall annotation on every subclass, or can write @InheritableMustCall on only
A, which will cause the checker to treat every subclass as if it has an identical @MustCall annotation. The latter is the
preferred style.

For example, given the following class annotation:

package java.net;
import org.checkerframework.checker.mustcall.qual.InheritableMustCall;

@InheritableMustCall ({"close"}) class Socket { }

any use of Socket or a subclass of Socket defaults to @MustCall ({"close"}) Socket.
The @InheritableMustCall annotation is necessary because type annotations cannot be made inheritable.
@InheritableMustCall is a declaration annotation.

27.3 Assumptions about reflection

The Must Call Checker is unsound with respect to reflection: it assumes that objects instantiated reflectively do not
have must-call obligations (i.e., that their type is @MustCall ({}). If the checker is run with -AresolveReflection,
then this assumption applies only to types that cannot be resolved.

27.4 Type parameter bounds often need to be annotated

In an unannotated program, there may be mismatches between defaulted type qualifiers that lead to type-checking
errors. That is, the defaulted annotations at two different locations may be different and in conflict. A specific example
is in code that contains a mix of explicit upper bounds with an extends clause and implicit upper bounds without an
extends clause.

For example, consider the following example (from plume-util) of an interface with explicit upper bounds and a
client with implicit upper bounds:

163

https://github.com/plume-lib/plume-util

interface Partition<ELEMENT extends @Nullable Object, CLASS extends @Nullable Object> {}

class MultiRandSelector<T> {
private Partition<T, T> eg;

The code contains no @MustCall annotations. Running the Must Call Checker on this code produces an error at
each use of T in MultiRandSelector:

error: [type.argument] incompatible type argument for type parameter ELEMENT of Partitioner.
private Partitioner<T, T> eq;

A

found : T extends @MustCallUnknown Object
required: @MustCall Object
error: [type.argument] incompatible type argument for type parameter CLASS of Partitioner.
private Partitioner<T, T> eq;

found : T extends @MustCallUnknown Object
required: @MustCall Object
The defaulted Must Call annotations differ. Partitioner has an explicit bound, which uses the usual default of
@MustCall ({}).MultiRandSelector has an implicit bound, which defaults to top (that is, @MustCallUnknown), as

explained in Section[31.5.3]
In many cases, including this one, you can eliminate the false positive warning without writing any @MustCall

annotations. You can either:

e add an explicit bound to MultiRandSelector, changing its declaration to class MultiRandSelector<T
extends Object>, or

e remove the explicit bound from Partition, changing its declaration to interface Partition<ELEMENT,
CLASS>.

164

Chapter 28

Subtyping Checker

The Subtyping Checker enforces only subtyping rules. It operates over annotations specified by a user on the command
line. Thus, users can create a simple type-checker without writing any code beyond definitions of the type qualifier
annotations.

The Subtyping Checker can accommodate all of the type system enhancements that can be declaratively specified
(see Chapter [35). This includes type introduction rules via the|¢QualifierForLiterals meta-annotation, and other
features such as type refinement (Section[31.7) and qualifier polymorphism (Section [30.2)).

The Subtyping Checker is also useful to type system designers who wish to experiment with a checker before writing
code; the Subtyping Checker demonstrates the functionality that a checker inherits from the Checker Framework.

If you need typestate analysis, then you can extend a typestate checker. For more details (including a definition of
“typestate”), see Chapter[29.30] See Section for a simpler alternative.

For type systems that require special checks (e.g., warning about dereferences of possibly-null values), you will
need to write code and extend the framework as discussed in Chapter [35]

28.1 Using the Subtyping Checker

The Subtyping Checker is wused in the same way as other checkers (using the -processor
org.checkerframework.common.subtyping.SubtypingChecker option; see Chapter [2), except that it re-
quires an additional annotation processor argument via the standard “-A” switch. You must provide one or both of the
two following command-line arguments:

e Provide the fully-qualified class name(s) of the annotation(s) in the custom type system through the -Aquals
option, using a comma-no-space-separated notation:
javac -classpath /full/path/to/myProject/bin:/full/path/to/myLibrary/bin \
-processor org.checkerframework.common.subtyping.SubtypingChecker \
-Aquals=myPackage.qual.MyQual,myPackage.qual.OtherQual MyFile.java ...

e Provide the fully-qualified paths to a set of directories that contain the annotations in the custom type system
through the -AqualDirs option, using a colon-no-space-separated notation. For example, if the Checker
Framework is on the classpath rather than the processorpath:

javac -classpath /full/path/to/myProject/bin:/full/path/to/myLibrary/bin \
-processor org.checkerframework.common.subtyping.SubtypingChecker \
-AqualDirs=/full/path/to/myProject/bin:/full/path/to/myLibrary/bin MyFile. java

If the Checker Framework is on the processorpath, place the annotations on the processorpath instead of on the
classpath.

165

../api/org/checkerframework/framework/qual/QualifierForLiterals.html

28.1.1 Compiling your qualifiers and your project

The annotations listed in ~Aquals or ~AqualDirs must be accessible to the compiler during compilation. Before you
run the Subtyping Checker with javac, they must be compiled and on the same path (the classpath or processorpath) as
the Checker Framework. It is not sufficient to supply their source files on the command line.

28.1.2 Suppressing warnings from the Subtyping Checker

When suppressing a warning issued by the Subtyping Checker, as the “checker name” you may use the unquali-
fied, uncapitalized name of any of the annotations passed to -Aquals. (See Section [32.1.1] for details about the
@SuppressWarnings syntax.) As a matter of style, you should choose one of the annotations as the “checker name”
part of the @SuppressWarnings string and use it consistently; this avoids confusion and makes it easier to search for
uses.

28.2 Subtyping Checker example

Consider a hypothetical Encrypted type qualifier, which denotes that the representation of an object (such as a String,
CharSequence, or byte[]) is encrypted. To use the Subtyping Checker for the Encrypted type system, follow three
steps.

1. Define two annotations for the Encrypted and PossiblyUnencrypted qualifiers:
package myPackage.qual;

import org.checkerframework.framework.qual.DefaultFor;
import org.checkerframework.framework.qual.SubtypeOf;
import java.lang.annotation.ElementType;

import java.lang.annotation.Target;

/**
* Denotes that the representation of an object is encrypted.
*/
@SubtypeOf (PossiblyUnencrypted.class)
@efaultFor ({TypeUseLocation.LOWER_BOUND})
@Target ({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
public @interface Encrypted {}

package myPackage.qual;

import org.checkerframework.framework.qual.DefaultQualifierInHierarchy;
import org.checkerframework.framework.qual.SubtypeOf;

import java.lang.annotation.ElementType;

import java.lang.annotation.Target;

/**
* Denotes that the representation of an object might not be encrypted.
*/
@DefaultQualifierInHierarchy
@SubtypeOf ({})
@Target ({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
public @interface PossiblyUnencrypted {}
Note that all custom annotations must have the @Target (ElementType.TYPE_USE) meta-annotation. See

Section[33.5.11

166

Don’t forget to compile these classes:
$ javac myPackage/qual/Encrypted.java myPackage/qual/PossiblyUnencrypted. java

The resulting .class files should either be on the same path (the classpath or processor path) as the Checker
Framework.

. Write @Encrypted annotations in your program (say, in file YourProgram. java):
import myPackage.qual.Encrypted;

public @Encrypted String encrypt (String text) {
//

// Only send encrypted data!
public void sendOverInternet (@Encrypted String msg) {
//

void sendText () {
//
@Encrypted String ciphertext = encrypt (plaintext);
sendOverInternet (ciphertext);

/!

void sendPassword() {
String password = getUserPassword();
sendOverInternet (password);
}
You may also need to add @SuppressWarnings annotations to the encrypt and decrypt methods. Analyzing
them is beyond the capability of any realistic type system.
. Invoke the compiler with the Subtyping Checker, specifying the @Encrypted annotation using the -Aquals
option. You should add the Encrypted classfile to the processor classpath:
javac -processorpath myqualpath -processor org.checkerframework.common.subtyping.SubtypingChecker

YourProgram. java:42: incompatible types.
found : @myPackage.qual.PossiblyUnencrypted java.lang.String
required: @myPackage.qual.Encrypted java.lang.String
sendOverInternet (password) ;
. You can also provide the fully-qualified paths to a set of directories that contain the qualifiers using the
-AqualDirs option, and add the directories to the boot classpath, for example:
javac -classpath /full/path/to/myProject/bin:/full/path/to/myLibrary/bin \
-processor org.checkerframework.common.subtyping.SubtypingChecker \
-AqualDirs=/full/path/to/myProject/bin:/full/path/to/myLibrary/bin YourProgram. java
Note that in these two examples, the compiled class file of the myPackage.qual.Encrypted and
myPackage.qual.PossiblyUnencrypted annotations must exist in either the myProject/bin directory or
the myLibrary/bin directory. The following placement of the class files will work with the above commands:
.../myProject/bin/myPackage/qual/Encrypted.class
.../myProject/bin/myPackage/qual/PossiblyUnencrypted.class

167

@MyTypeUnknown

@vyType @NotMyType

— —r

@MyTypeBottom

Figure 28.1: Type system for a type alias or typedef type system. The type system designer may choose to omit some
of these types, but this is the general case. The type system designer’s choice of defaults affects the interpretation of
unannotated code, which affects the guarantees given for unannotated code.

Also, see the example project in the docs/examples/subtyping-extension directory.

28.3 Type aliases and typedefs

A type alias or typedef is a type that shares the same representation as another type but is conceptually distinct from it.
For example, some strings in your program may be street addresses; others may be passwords; and so on. You wish to
indicate, for each string, which one it is, and to avoid mixing up the different types of strings. Likewise, you could
distinguish integers that are offsets from those that are absolute values.

Creating a new type makes your code easier to understand by conveying the intended use of each variable. It also
prevents errors that come from using the wrong type or from mixing incompatible types in an operation.

If you want to create a type alias or typedef, you have multiple options: a regular Java subtype, the Units Checker
(Chapter[T9] page[I33)), the Fake Enum Checker (Chapter[0] page[77), or the Subtyping Checker.

A Java subtype is easy to create and does not require a tool such as the Checker Framework; for instance,
you would declare class Address extends String. There are a number of limitations to this “pseudo-typedef™,
however [Goe06l|. Primitive types and final types (including String) cannot be extended. Equality and identity tests
can return incorrect results when a wrapper object is used. Existing return types in code would need to be changed,
which is easy with an annotation but disruptive to change the Java type. Therefore, it is best to avoid the pseudo-typedef
antipattern.

The Units Checker (Chapter [19] page [I33)) is useful for the particular case of units of measurement, such as
kilometers verses miles.

The Fake Enum Checker (Chapter [0 page builds in a set of assumptions. If those fit your use case, then
it’s easiest to use the Fake Enum Checker (though you can achieve them using the Subtyping Checker). The Fake
Enum Checker forbids mixing of fenums of different types, or fenums and unannotated types. For instance, binary
operations other than string concatenations are forbidden, such as NORTH+1, NORTH+MONDAY, and NORTH==MONDAY.
However, NORTH+SOUTH is permitted.

By default, the Subtyping Checker does not forbid any operations.

If you choose to use the Subtyping Checker, then you have an additional design choice to make about the type
system. In the general case, your type system will look something like Figure 28.T]

References whose type is @MyType are known to store only values from your new type. There is no such guarantee
for @MyTypeUnknown and @NotMyType, but those types mean different things. An expression of type @NotMyType is
guaranteed never to evaluate to a value of your new type. An expression of type @MyTypeUnknown may evaluate to any
value — including values of your new type and values not of your new type. (@MyTypeBottom is the type of null and
is also used for dead code and erroneous situations; it can be ignored for this discussion.)

A key choice for the type system designer is which type is the default. That is, if a programmer does not write
@MyType on a given type use, should that type use be interpreted as @MyTypeUnknown or as @NotMyType?

e [f unannotated types are interpreted as @NotMyType, then the type system enforces very strong separation between
your new type and all other types. Values of your type will never mix with values of other types. If you don’t see

168

@MyType written explicitly on a type, you will know that it does not contain values of your type.

o If unannotated types are interpreted as @MyTypeUnknown, then a generic, unannotated type may contain a value
of your new type. In this case, @NotMyType does not need to exist, and @MyTypeBottom may or may not exist in
your type system.

A downside of the stronger guarantee that comes from using @NotMyType as the default is the need to write
additional annotations. For example, if @NotMyType is the default, this code does not typecheck:

void method(Object o) { ... }
<U> void use(List<U> list) {
method (list.get (0));

Because (implicit) upper bounds are interpreted as the top type (see Section[30.1.2), this is interpreted as

void method (@NotMyType Object o) { ... }

<@U extends @MyTypeUnknown Object> void use (List<U> list) {
// type error: list.get(0) has type @MyTypeUnknown, method expects @NotMyType
method (list.get (0));

To make the code type-check, it is necessary to write an explicit annotation, either to restrict use’s argument or to
expand method’s parameter type.

169

Chapter 29

Third-party checkers

The Checker Framework has been used to build other checkers that are not distributed together with the framework. This
chapter gives an incomplete list of them. (If you know of others, or if you want this chapter to reference your checker,
please send us a link and a short description.) Many of the publications in Section provide implementations, which
are not necessarily listed here yet.

These tools are externally-maintained, so if you have problems or questions, you should contact their maintainers
rather than the Checker Framework maintainers.

This list is in reverse chronological order; newer tools appear first and older ones appear last.

29.1 Determinism checker

The Determinism Checker (https://github.com/t-rasmud/checker-framework/tree/nondet-checker) en-
sures that a program is deterministic across executions. A determinismic program is easier to test, and it is easier to
debug (such as comparing executions).

The Determinism Checker focuses on sequential programs. It detects determinism due to the iteration order of a
hash table (or on any other property of hash codes), default formatting (such as Java’s Object.toString (), which
includes a memory address), random, date-and-time functions, and accessing system properties such as the file system
or environment variables.

The paper|“Verifying determinism in sequential programs”| [MWME21] describes the Determinism Checker.

29.2 Constant Value Inference (Interval Inference)

Interval analysis estimates the run-time values of numerical expressions in the source code by computing a lower
bound and an upper bound. The Constant Value Inference (https://github.com/d367wang/value-inference/
tree/artifact) project is a whole-program inference approach for integral range analysis (interval analysis).

The thesis “Interval Type Inference: Improvements and Evaluations” [Wan21]] describes Constant Value Inference.

29.3 Crypto Checker

The Crypto Checker (https://github.com/vehiloco/crypto-checker) can help you find whether there are any
weak or unsupported crypto algorithms and the unsupported algorithm providers being used in your program. If the
Crypto Checker issues no warnings for a given program, then you have a guarantee that your program at runtime will
never have these issues. This is similar to the earlier AWS Crypto Policy Compliance Checker (Section[29.4).

The paper |“Ensuring correct cryptographic algorithm and provider usage at compile time” [XCD21]] (FTFjP 2021)
and the thesis “Light-weight verification of cryptographic API usage” [Xin20] describe the Crypto Checker.

170

https://github.com/t-rasmud/checker-framework/tree/nondet-checker
https://homes.cs.washington.edu/~mernst/pubs/determinism-icse2021-abstract.html
https://github.com/d367wang/value-inference/tree/artifact
https://github.com/d367wang/value-inference/tree/artifact
https://uwspace.uwaterloo.ca/bitstream/handle/10012/17788/Wang_Di.pdf
https://github.com/vehiloco/crypto-checker
https://vehiloco.github.io/crypto-checker/2021-06-04-Crypto-Checker-FTfJP-2021-preprint.pdf
https://uwspace.uwaterloo.ca/bitstream/handle/10012/16555/Xing_Weitian.pdf

29.4 AWS crypto policy compliance checker

The AWS crypto policy compliance checker (https://github.com/awslabs/aws-crypto-policy-compliance-checker)
checks that no weak cipher algorithms are used with the Java crypto APL

The paper “Continuous Compliance” [KSTE20] (ASE 2020) describes several custom Checker Framework checkers
in the context of a compliance regime at Amazon Web Services.

29.5 AWS KMS compliance checker

The AWS KMS compliance checker (https://github.com/awslabs/aws-kms-compliance-checker) extends the
Constant Value Checker (see Chapter [22] page [T43) to enforce that calls to Amazon Web Services’ Key Management
System only request 256-bit (or longer) data keys. This checker can be used to help enforce a compliance requirement
(such as from SOC or PCI-DSS) that customer data is always encrypted with 256-bit keys.

The KMS compliance checker is available in Maven Central. To use it in build.gradle, add the following
dependency:

compile group: ’software.amazon.checkerframework’, name: ’'aws-kms-compliance-checker’, version: ’1.0.2’

Other build systems|are similar.
The paper “Continuous Compliance” [KSTE20] (ASE 2020) describes several custom Checker Framework checkers
in the context of a compliance regime at Amazon Web Services.

29.6 PUnits units of measurement

The PUnits system (https://github.com/opprop/units-inference) can check the correctness of a program or
annotate a program with units of measurement. It is described in the paper “Precise inference of expressive units of
measurement types” (OOPSLA 2020) [XLD20].

29.7 JaTyC typestate checker

JaTyC, Java Typestate Checker (https://github.com/jdmota/java-typestate-checker), ensures that methods
are called in the correct order. The sequences of method calls allowed are specified in a protocol file which is associated
with a Java class by adding a @Typestate annotation to the class. It is described in|“Behavioural Types for Memory
and Method Safety in a Core Object-Oriented Language” [BEG 20, and the implementation is an extension of Mungo
(http://www.dcs.gla.ac.uk/research/mungo/index.html).

29.8 NullAway

NullAway (https://github.com/uber/NullAway) is a fast type-checker for only nullness properties. It is built on
top of Error Prone and the Checker Framework’s Dataflow Framework. See Section [38.10.3|for a comparison between
NullAway and the Nullness Checker. NullAway is described in the paper|“NullAway: Practical type-based null safety
for Java” [BCS19].

29.9 Nullness Rawness Checker

The Nullness Rawness Checker is a variant of the Nullness Checker that uses a different type system for initialization.
It was distributed with the Checker Framework through release 2.9.0 (dated 3 July 2019). If you wish to use it, install
Checker Framework version 2.9.0.

The paper|“Inference of field initialization” [SE1 1] describes inference for the Rawness Initialization Checker.

171

https://github.com/awslabs/aws-crypto-policy-compliance-checker
https://homes.cs.washington.edu/~mernst/pubs/continuous-compliance-ase2020-abstract.html
https://github.com/awslabs/aws-kms-compliance-checker
https://mvnrepository.com/artifact/software.amazon.checkerframework/aws-kms-compliance-checker/1.0.2
https://homes.cs.washington.edu/~mernst/pubs/continuous-compliance-ase2020-abstract.html
https://github.com/opprop/units-inference
https://github.com/jdmota/java-typestate-checker
https://arxiv.org/pdf/2002.12793.pdf
https://arxiv.org/pdf/2002.12793.pdf
http://www.dcs.gla.ac.uk/research/mungo/index.html
https://github.com/uber/NullAway
https://lazaroclapp.com/preprints/fse19-nullaway.pdf
https://lazaroclapp.com/preprints/fse19-nullaway.pdf
https://checkerframework.org/releases/2.9.0/
https://homes.cs.washington.edu/~mernst/pubs/initialization-icse2011-abstract.html

29.10 UI Thread Checker for ReactiveX

The Rx Thread & Effect Checker (https://github.com/uber-research/RxThreadEffectChecker) enforces Ul
Thread safety properties for stream-based Android applications. The paper |[“Safe Stream-Based Programming with
Refinement Types” [SCSC18] describes the Rx Thread & Effect Checker.

29.11 Practical Immutability For Classes And Objects (PICO)

Practical Immutability For Classes And Objects (PICO) is a type system that supports class level and object level
immutability based on Checker Framework. The implementation is available at https://github.com/opprop/
immutabilityl and a docker image is available at https://hub.docker.com/repository/docker/lnsun/pico.

The theses “Context Sensitive Typechecking And Inference: Ownership And Immutability”| [Tal8]] and “An
Immutability Type System for Classes and Objects: Improvements, Experiments, and Comparisons” [Sun21]] describe
PICO.

29.12 Read Checker and Cast Checker for ensuring that EOF is recognized

The InputStream.read() and Reader.read () methods read a byte (or character) from a stream. The methods return
an int, using -1 to indicate the end of the stream. It is an error to cast the value to a byte (or character) without
first checking the value against -1. This is rule CERT-FIO08-J. The Read Checker (https://github.com/opprop/
ReadChecker) and/or Cast Checker (https://github.com/opprop/cast-checker) enforces it.

The paper “Don’t miss the end: Preventing unsafe end-of-file comparisons” [[CD18]] and the thesis |“Pluggable
Properties for Program Understanding: Ontic Type Checking and Inference” [[Chel8| describe the Read Checker.

29.13 Ontology type system

The Ontology type system (https://github.com/opprop/ontology) groups related types into coarser concepts. For
example, the SEQUENCE concept includes Java’s Array, List, and their subtypes. Other examples are VELOCITY
and FORCE.

The thesis “Pluggable Properties for Program Understanding: Ontic Type Checking and Inference”| [Chel8]]
describes the Ontic type system.

29.14 Glacier: Class immutability

Glacier (http://glacier.coblenz.us/) enforces transitive class immutability in Java. According to its webpage:

o Transitive: if a class is immutable, then every field must be immutable. This means that all reachable state from
an immutable object’s fields is immutable.

e Class: the immutability of an object depends only on its class’s immutability declaration.

e Immutability: state in an object is not changable through any reference to the object.

Glacier is described by the paper “Glacier: Transitive class immutability for Java™ (ICSE 2017) [CNA™17]] and the
PhD thesis “User-Centered Design of Principled Programming Languages”| [[Cob20)]].
29.15 SQL checker that supports multiple dialects

jOOQis a database API that lets you build typesafe SQL queries. jOOQ version 3.0.9 and later ships with a SQL checker
that provides even more safety: it ensures that you don’t use SQL features that are not supported by your database imple-
mentation. You can learn about the SQL checker athttps://blog. joog.org/jsr-308-and-the-checker-framework-add-even-mc

172

https://github.com/uber-research/RxThreadEffectChecker
https://www.bennostein.org/ase18.pdf
https://www.bennostein.org/ase18.pdf
https://github.com/opprop/immutability
https://github.com/opprop/immutability
https://hub.docker.com/repository/docker/lnsun/pico
https://uwspace.uwaterloo.ca/bitstream/handle/10012/13185/Ta_Mier.pdf
https://uwspace.uwaterloo.ca/bitstream/handle/10012/16882/Lian_Sun.pdf
https://uwspace.uwaterloo.ca/bitstream/handle/10012/16882/Lian_Sun.pdf
https://wiki.sei.cmu.edu/confluence/display/java/FIO08-J.+Distinguish+between+characters+or+bytes+read+from+a+stream+and+-1
https://github.com/opprop/ReadChecker
https://github.com/opprop/ReadChecker
https://github.com/opprop/cast-checker
https://uwspace.uwaterloo.ca/bitstream/handle/10012/13181/zhuo_chen.pdf
https://uwspace.uwaterloo.ca/bitstream/handle/10012/13181/zhuo_chen.pdf
https://github.com/opprop/ontology
https://uwspace.uwaterloo.ca/bitstream/handle/10012/13181/zhuo_chen.pdf
http://glacier.coblenz.us/
http://reports-archive.adm.cs.cmu.edu/anon/2020/CMU-CS-20-127.pdf
http://www.jooq.org/
https://blog.jooq.org/jsr-308-and-the-checker-framework-add-even-more-typesafety-to-jooq-3-9/

29.16 Immutability checkers: 1IGJ, OIGJ, and Javari

Javari [TEQ3], IGJ [ZPAT07]], and OIGJ [ZPL™10] are type systems that enforce immutability constraints. Type-
checkers for all three type systems were distributed with the Checker Framework through release 1.9.13 (dated 1 April
2016). If you wish to use them, install Checker Framework version 1.9.13|

They were removed from the main distribution on June 1, 2016 because the implementations were not being
maintained as the Checker Framework evolved. The type systems are valuable, and some people found the type-
checkers useful. However, we wanted to focus on distributing checkers that are currently being maintained.

IGJ and OIGJ are described in the papers “Object and reference immutability using Java generics”| [ZPA™07]]
(ESEC/FSE 2007) and “Ownership and immutability in generic Java” [ZPL™10] (OOPSLA 2010). The Javari type
system is described in “Javari: Adding reference immutability to Java”| [TEOS] (OOPSLA 2005); for inference,
see “Inference of reference immutability”| [QTEOS] (ECOOP 2008) and “Parameter reference immutability: Formal
definition, inference tool, and comparison” [AQKEQ09] (J.ASE 2009). The paper [‘Practical pluggable types for
Java”| [PACT08]] ISSTA 2008) describes case studies in which the Javari and IGJ Checkers found previously-unknown
errors in real software.

29.17 JCrypt: computation over encrypted data

JCrypt (https://github.com/proganalysis/type-inference) is a static program analysis which transforms
a Java program into an equivalent one, so that it performs computation over encrypted data and preserves data
confidentiality. It is described in the paper|“JCrypt: Towards computation over encrypted data” [DMD16a].

29.18 DroidInfer: information flow

DroidInfer (https://github.com/proganalysis/type-inference) determines the Android library sources (e.g.,
location access, phone state) and sinks (e.g., Internet access) used by a program, and determines whether there is
impermissible information flow between them. It is described in the paper “Scalable and Precise Taint Analysis for
Android” (ISSTA 2015) [HDMD13].

29.19 Error Prone linter

Error Prone (https://errorprone.info/) is a linter or bug detector for Java. It reports violations of style rules. It is
built on top of the Checker Framework’s Dataflow Framework. See Section [38.10.]for a comparison between Error
Prone and the Nullness Checker.

29.20 SPARTA information flow type-checker for Android

SPARTA (https://checkerframework.org/sparta/) is a security toolset aimed at preventing malware from ap-
pearing in an app store. SPARTA provides an information-flow type-checker that is customized to Android but can
also be applied to other domains. The paper|“Collaborative verification of information flow for a high-assurance app
store” [EJIM™ 14| (CCS 2014) describes the SPARTA toolset and information flow type-checker.

29.21 SFlow type system for information flow

SFlow (https://github.com/proganalysis/type-inference) is a context-sensitive type system for secure infor-
mation flow. It contains two variants, SFlow/Integrity and SFlow/Confidentiality. SFlowInfer is its worst-case-cubic
inference analysis.

The paper |“Type-based taint analysis for Java web applications” (FASE 2014) and the thesis “An Inference And
Checking Framework For Context-Sensitive Pluggable Types” (PhD thesis, 2014) describe SFlow and SFlowInfer.

173

https://checkerframework.org/releases/1.9.13/
https://homes.cs.washington.edu/~mernst/pubs/immutability-generics-fse2007-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/ownership-immutability-oopsla2010-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/ref-immutability-oopsla2005-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/infer-refimmutability-ecoop2008-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/mutability-jase2009-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/mutability-jase2009-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
https://github.com/proganalysis/type-inference
http://cs.rpi.edu/~dongy6/docs/pppj16-jcrypt.pdf
https://github.com/proganalysis/type-inference
https://www.cs.rpi.edu/~milanova/docs/DroidInfer.pdf
https://www.cs.rpi.edu/~milanova/docs/DroidInfer.pdf
https://errorprone.info/
https://checkerframework.org/sparta/
https://homes.cs.washington.edu/~mernst/pubs/infoflow-ccs2014.pdf
https://homes.cs.washington.edu/~mernst/pubs/infoflow-ccs2014.pdf
https://github.com/proganalysis/type-inference
https://www.cs.rpi.edu/~milanova/docs/FASE14.pdf

29.22 CheckLT taint checker

CheckLT (http://checklt.github.io/) uses taint tracking to detect illegal information flows, such as unsanitized
data that could result in a SQL injection attack.

29.23 Ener]J checker

EnerJ (http://sampa.cs.washington.edu/research/approximation/enerj.html) is an extension to Java that
exposes hardware faults in a safe, principled manner to save energy with only slight sacrifices to the quality of
service. More details appear in the paper “Ener]: Approximate Data Types for Safe and General Low-Power Computa-
tion” [SDE"11]] (PLDI 2011).

29.24 Relm immutability

A checker and inference tool for Relm [HMDE]12l [Hual4l], an immutability type system, is available at http://www,
cs.rpi.edu/~huangw5/cf-inference/.
29.25 SFlow x Relm for information flow and reference immutability

The “SFlow x Relm” (https://github.com/proganalysis/type-inference) system combines information flow
and reference immutability. It is described in the paper “Composing polymorphic information flow systems with
reference immutability” [MH13].

29.26 Generic Universe Types checker
A checker for Generic Universe Types [DEM11], a lightweight ownership type system, is available from https:
//ece.uwaterloo.ca/~wdietl/ownership/ andhttps://github.com/opprop/universe.

The paper “Tunable static inference for Generic Universe Types” [DEM11] (ECOOP 2011) describes inference for

the Generic Universe Types type system. Another implementation of Universe Types and ownership types|is described
in |“Inference and checking of object ownership”| [HDME12]] (ECOOP 2012).

29.27 Safety-Critical Java checker
A checker for Safety-Critical Java (SCJ, JSR 302) [TPV10, TPNV11] is available at https://sss.cs.purdue.edu/

projects/oscj/checker/checker.html. Developer resources are available at the project page https://code,
google.com/archive/p/scj-sr302/.

29.28 Thread locality checker

Loci (http://www.it.uu.se/research/upmarc/loci/)) is a checker for thread locality. For more details, see the
paper |[“Loci: Simple thread-locality for Java” [WPM™09]] (ECOOP 2009) and the thesis “The Design, Implementation
and Evaluation of a Pluggable Type Checker for Thread-Locality in Java” [Shell].

29.29 Units and dimensions checker

A checker for units and dimensions is available at https://www.lexspoon.org/expannots/.

174

http://checklt.github.io/
http://sampa.cs.washington.edu/research/approximation/enerj.html
https://homes.cs.washington.edu/~luisceze/publications/Enerj-pldi2011.pdf
https://homes.cs.washington.edu/~luisceze/publications/Enerj-pldi2011.pdf
http://www.cs.rpi.edu/~huangw5/cf-inference/
http://www.cs.rpi.edu/~huangw5/cf-inference/
https://github.com/proganalysis/type-inference
https://www.cs.rpi.edu/~milanova/docs/FTFJP13.pdf
https://www.cs.rpi.edu/~milanova/docs/FTFJP13.pdf
https://ece.uwaterloo.ca/~wdietl/ownership/
https://ece.uwaterloo.ca/~wdietl/ownership/
https://github.com/opprop/universe
https://homes.cs.washington.edu/~mernst/pubs/tunable-typeinf-ecoop2011-abstract.html
http://www.cs.rpi.edu/~huangw5/cf-inference/
https://homes.cs.washington.edu/~mernst/pubs/infer-ownership-ecoop2012-abstract.html
https://sss.cs.purdue.edu/projects/oscj/checker/checker.html
https://sss.cs.purdue.edu/projects/oscj/checker/checker.html
https://code.google.com/archive/p/scj-jsr302/
https://code.google.com/archive/p/scj-jsr302/
http://www.it.uu.se/research/upmarc/loci/
http://janvitek.org/pubs/ecoop09.pdf
http://uu.diva-portal.org/smash/get/diva2:428159/FULLTEXT01.pdf
http://uu.diva-portal.org/smash/get/diva2:428159/FULLTEXT01.pdf
https://www.lexspoon.org/expannots/

Unlike the Units Checker that is distributed with the Checker Framework (see Section[I9), this checker includes
dynamic checks and permits annotation arguments that are Java expressions. This added flexibility, however, requires
that you use a special version both of the Checker Framework and of the javac compiler.

29.30 Typestate checkers

In a regular type system, a variable has the same type throughout its scope. In a typestate system, a variable’s type can
change as operations are performed on it.

The most common example of typestate is for a File object. Assume a file can be in two states, @0pen and @Closed.
Calling the close () method changes the file’s state. Any subsequent attempt to read, write, or close the file will lead to
a run-time error. It would be better for the type system to warn about such problems, or guarantee their absence, at
compile time.

Accumulation analysis (Chapter 36 page[253)) is a special case of typestate analysis. One instantiation of it is the
Called Methods Checker (Chapter[7] page[65), which can check any property of the form “call method A before method
B”. It also ensures that builders are used correctly.

JaTyC (Section[29.7) is a Java typestate checker.

29.30.1 Comparison to flow-sensitive type refinement

The Checker Framework’s flow-sensitive type refinement (Section implements a form of typestate analysis. For
example, after code that tests a variable against null, the Nullness Checker (Chapter [3) treats the variable’s type as
@NonNull T, for some T.

For many type systems, flow-sensitive type refinement is sufficient. But sometimes, you need full typestate analysis.
This section compares the two. (Unused variables (Section [31.10) also have similarities with typestate analysis and can
occasionally substitute for it. For brevity, this discussion omits them.)

A typestate analysis is easier for a user to create or extend. Flow-sensitive type refinement is built into the Checker
Framework and is optionally extended by each checker. Modifying the rules requires writing Java code in your checker.
By contrast, it is possible to write a simple typestate checker declaratively, by writing annotations on the methods (such
as close ()) that change a reference’s typestate.

A typestate analysis can change a reference’s type to something that is not consistent with its original definition.
For example, suppose that a programmer decides that the @0pen and @Closed qualifiers are incomparable — neither
is a subtype of the other. A typestate analysis can specify that the close () operation converts an @0pen File into a
@Closed File. By contrast, flow-sensitive type refinement can only give a new type that is a subtype of the declared
type — for flow-sensitive type refinement to be effective, @C1osed would need to be a child of @0pen in the qualifier
hierarchy (and close () would need to be treated specially by the checker).

175

Chapter 30

Generics and polymorphism

Section [30.1] describes support for Java generics (also known as “parametric polymorphism”). Section [30.2] describes
polymorphism over type qualifiers for methods. Section describes polymorphism over type qualifiers for classes.

30.1 Generics (parametric polymorphism or type polymorphism)

The Checker Framework fully supports type-qualified Java generic types and methods (also known as “parametric
polymorphism’). When instantiating a generic type, clients supply the qualifier along with the type argument, as in
List<@NonNull String>. When using a type variable T within the implementation of a generic type, typically no type
qualifier is written (see Section [30.1.3)); rather, the instantiation of the type parameter is restricted (see Section [30.1.2).

30.1.1 Raw types

Before running any pluggable type-checker, we recommend that you eliminate raw types from your code (e.g., your code
should use List<...> as opposed to List). Your code should compile without warnings when using the standard Java
compiler and the -X1int :unchecked -Xlint:rawtypes command-line options. Using generics helps prevent type
errors just as using a pluggable type-checker does, and makes the Checker Framework’s warnings easier to understand.

If your code uses raw types, then the Checker Framework will do its best to infer the Java type arguments and the
type qualifiers. By default these inferred types are ignored in subtyping checks. If you supply the command-line option
-AignoreRawTypeArguments=false you will see errors from raw types.

30.1.2 Restricting instantiation of a generic class

When you define a generic class in Java, the extends clause of the generic type parameter (known as the “upper bound”)
requires that the corresponding type argument must be a subtype of the bound. For example, given the definition
class G<T extends Number> {...}, the upper bound is Number and a client can instantiate it as G<Number> or
G<Integer> but not G<Date>.

You can write a type qualifier on the extends clause to make the upper bound a qualified type. For example, you
can declare that a generic list class can hold only non-null values:

class MyList<T extends @NonNull Object> {...}

MyList<@NonNull String> ml; // OK
MyList<@Nullable String> m2; // error

That is, in the above example, all arguments that replace T in MyList<T> must be subtypes of @NonNull Object.

176

Syntax for upper and lower bounds

Conceptually, each generic type parameter has two bounds — a lower bound and an upper bound — and at instantiation,
the type argument must be within the bounds. Java only allows you to specify the upper bound; the lower bound is
implicitly the bottom type void. The Checker Framework gives you more power: you can specify both an upper and
lower bound for type parameters. Write the upper bound on the extends clause, and write the lower bound on the type
variable.

class MyList<@LowerBound T extends @UpperBound Object> { ... }

You may omit either the upper or the lower bound, and the Checker Framework will use a default.

For a discussion of wildcards, see Section 30.1.4}

For a concrete example, recall the type system of the Regex Checker (see Figure[I3.1} page[T07) in which @Regex (0)
:> @Regex (1) :> @Regex (2) :> @Regex (3) >....

class MyRegexes<@Regex (5) T extends @Regex(l) String> { ... }

MyRegexes<@Regex (0) String> mu; // error - QRegex(0) is not a subtype of RRegex (1)
MyRegexes<@Regex (1) String> ml; // OK

MyRegexes<@Regex (3) String> m3; // OK

MyRegexes<@Regex (5) String> m5; // OK

MyRegexes<(@Regex (6) String> mé6; // error - QRegex(6) is not a supertype of @Regex(5)

The above declaration states that the upper bound of the type variable is @Regex (1) String and the lower bound
is @Regex (5) void. That is, arguments that replace T in MyList<T> must be subtypes of @Regex (1) String and
supertypes of @Regex (5) void. Since void cannot be used to instantiate a generic class, MyList may be instantiated
with @Regex (1) String through @Regex (5) String.

To specify an exact bound, place the same annotation on both bounds. For example:

class MyListOfNonNulls<@NonNull T extends @NonNull Object> { ... }
class MyListOfNullables<@Nullable T extends @Nullable Object> { ... }
MyListOfNonNulls<@NonNull Number> vl; // OK
MyListOfNonNulls<@Nullable Number> v2; // error
MyListOfNullables<@NonNull Number> v4; // error
MyListOfNullables<@Nullable Number> v3; // OK

It is an error if the lower bound is not a subtype of the upper bound.

class MyClass<@Nullable T extends @NonNull Object> // error: @Nullable is not a subtype of @NonNull

Defaults

A generic type parameter or wildcard is written as class MyClass<@LowerBound T extends @UpperBound
JavaUpperBound> or as MyClass<@UpperBound ? super @LowerBound JavalowerBound>, where “@LowerBound
and “@UpperBound” are type qualifiers.

For lower bounds: If no type annotation is written in front of ?, then the lower bound defaults to @Bot tomType
void.

For upper bounds:

e [f the extends clause is omitted, then the upper bound defaults to @ TopType Object.
e If the extends clause is written but contains no type qualifier, then the normal defaulting rules apply to the type
in the extends clause (see Section[31.5.3).

The upper-bound rules mean that even though in Java the following two declarations are equivalent:

177

class MyClass<T>
class MyClass<T extends Object>

they specify different type qualifiers on the upper bound, if the type system’s default annotation is not its top annotation.
The Nullness type system is an example.

class MyClass<T> == class MyClass<T extends @Nullable Object>
class MyClass<T extends Object> == <class MyClass<T extends @NonNull Object>

The rationale for this choice is:

e The “<T>” in MyClass<T> means “fully unconstrained”, and the rules maintain that, without the need for a
programmer to change existing code.

e The “Object” in MyClass<T extends Object> is treated exactly like every other occurrence of Object in the
program — it would be confusing for different occurrences of Object to mean different annotated types.

Because of these rules, the recommended style is:

e Use “<T>” when there are no constraints on the type qualifiers. This is short and is what already appears in source
code.

e Whenever you write an extends clause, write an explicit type annotation on it. For example, for the Nullness
Checker, write class MyClass<T> rather than class MyClass<T extends @Nullable Object>, and write
class MyClass<T extends @NonNull Object> rather than class MyClass<T extends Object>.

For further discussion, see Section[38.7.2]

30.1.3 Type annotations on a use of a generic type variable

A type annotation on a use of a generic type variable overrides/ignores any type qualifier (in the same type hierarchy)
on the corresponding actual type argument. For example, suppose that T is a formal type parameter. Then using
@Nullable T within the scope of T applies the type qualifier @Nullable to the (unqualified) Java type of T. This
feature is sometimes useful, but more often the implementation of a generic type just uses the type variable T, whose
instantiation is restricted (see Section[30.1.2).

Here is an example of applying a type annotation to a generic type variable:

class MyClass2<T> {
@Nullable T myField = null;

}

The type annotation does not restrict how MyClass2 may be instantiated. In other words, both MyClass2<@NonNull
String> and MyClass2<@Nullable String> are legal, and in both cases @Nullable T means @Nullable String.
In MyClass2<@Interned String>, @Nullable T means @Nullable @Interned String.

Defaulting never affects a use of a type variable, even if the type variable use has no explicit annotation. Defaulting
helps to choose a single type qualifier for a concrete Java class or interface. By contrast, a type variable use represents a
set of possible types.

30.1.4 Annotations on wildcards

At an instantiation of a generic type, a Java wildcard indicates that some constraints are known on the type argument,
but the type argument is not known exactly. For example, you can indicate that the type parameter for variable 1s is
some unknown subtype of CharSequence:

178

List<? extends CharSequence> ls;
ls = new ArrayList<String>(); // OK
1s = new ArrayList<Integer>(); // error: Integer is not a subtype of CharSequence

For more details about wildcards, see the Java tutorial on wildcards/ or JLS §4.5.1.
You can write a type annotation on the bound of a wildcard:

List<? extends @NonNull CharSequence> 1ls;
ls = new ArrayList<@NonNull String>(); // OK
ls = new ArrayList<@Nullable String>(); // error: @Nullable is not a subtype of @NonNull

Conceptually, every wildcard has two bounds — an upper bound and a lower bound. Java only permits you to
write one bound. You can specify the upper bound with <? extends SomeType>, in which case the lower bound is
implicitly the bottom type void. You can specify the lower bound (with <? super OtherType>), in which case the
upper bound is implicitly the top type Object. The Checker Framework is more flexible: it lets you similarly write
annotations on both the upper and lower bound.

To annotate the implicit bound, write the type annotation before the ?. For example:

List<@LowerBound ? extends @UpperBound CharSequence> lo;
List<@UpperBound ? super @NonNull Number> ls;

For an unbounded wildcard (<?>, with neither bound specified), the annotation in front of a wildcard applies to both
bounds. The following three declarations are equivalent (except that you cannot write the bottom type void; note that
Void does not denote the bottom type):

List<@NonNull ?> lnn;
List<@NonNull ? extends @NonNull Object> lnn;
List<@NonNull ? super @NonNull void> lnn;

Note that the annotation in front of a type parameter always applies to its lower bound, because type parameters can
only be written with extends and never super.
The defaulting rules for wildcards also differ from those of type parameters (see Section[31.5.5).

30.1.5 Examples of qualifiers on a type parameter

Recall that @Nullable X is a supertype of @NonNull X, for any X. Most of the following types mean different things:

class MyListl<@Nullable T> { ... }

class MyListla<@Nullable T extends @Nullable Object> { ... } // same as MyListl
class MyList2<@NonNull T extends @NonNull Object> { ... }

class MyList2a<T extends @NonNull Object> { ... } // same as MyList2

class MyList3<T extends @Nullable Object> { ... }

MyListl and MyListla must be instantiated with a nullable type. The implementation of MyList1 must be able to
consume (store) a null value and produce (retrieve) a null value.

MyList2 and MyList2a must be instantiated with non-null type. The implementation of MyList2 has to account
for only non-null values — it does not have to account for consuming or producing null.

MyList3 may be instantiated either way: with a nullable type or a non-null type. The implementation of MyList3
must consider that it may be instantiated either way — flexible enough to support either instantiation, yet rigorous
enough to impose the correct constraints of the specific instantiation. It must also itself comply with the constraints of
the potential instantiations.

One way to express the difference among MyList1, MyList2, and MyList3 is by comparing what expressions are
legal in the implementation of the list — that is, what expressions may appear in the ellipsis in the declarations above,
such as inside a method’s body. Suppose each class has, in the ellipsis, these declarations:

179

https://docs.oracle.com/javase/tutorial/java/generics/wildcards.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-4.html#jls-4.5.1
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Void.html

T t;

@Nullable T nble; // Section "Type annotations on a use of a generic type variable", below,
@NonNull T nn; // further explains the meaning of "@Nullable T" and "@NonNull T".

void add(T arg) {}

T get(int 1) {}

Then the following expressions would be legal, inside a given implementation — that is, also within the ellipses. (Compil-
able source code appears as file checker-framework/checker/tests/nullness/generics/GenericsExample. java.)

MyListl | MyList2 | MyList3
t =null; OK error error
t = nble; OK error error
nble = null; OK OK OK
nn = null; error error error
t = this.get(0); OK OK OK
nble = this.get(0); OK OK OK
nn = this.get(0); error OK error
this.add(t); OK OK OK
this.add(nble); OK error error
this.add(nn); OK OK OK

The differences are more significant when the qualifier hierarchy is more complicated than just @Nullable and
@NonNull.

30.1.6 Covariant type parameters

Java types are invariant in their type parameter. This means that A<X> is a subtype of B<Y> only if X is identical to Y. For
example, ArrayList<Number> is a subtype of List<Number>, but neither ArrayList<Integer> nor List<Integer>
is a subtype of List<Number>. (If they were, there would be a loophole in the Java type system.) For the same
reason, type parameter annotations are treated invariantly. For example, List<@Nullable String> is not a subtype of
List<String>.

When a type parameter is used in a read-only way — that is, when clients read values of that type from the class
but never pass values of that type to the class — then it is safe for the type to be covariant in the type parameter. Use
the @Covariant|annotation to indicate this. When a type parameter is covariant, two instantiations of the class with
different type arguments have the same subtyping relationship as the type arguments do.

For example, consider Iterator. A client can read elements but not write them, so Iterator<@Nullable
String> can be a subtype of Iterator<String> without introducing a hole in the type system. Therefore, its type
parameter is annotated with @Covariant, The first type parameter of Map.Entry is also covariant. Another example
would be the type parameter of a hypothetical class ImmutableList.

The @Covariant annotation is trusted but not checked. If you incorrectly specify as covariant a type parameter
that can be written (say, the class supports a set operation or some other mutation on an object of that type), then you
have created an unsoundness in the type system. For example, it would be incorrect to annotate the type parameter of
ListIterator as covariant, because ListIterator supports a set operation.

30.1.7 Method type argument inference and type qualifiers

Sometimes method type argument inference does not interact well with type qualifiers. In such situations, you might
need to provide explicit method type arguments, for which the syntax is as follows:

Collections.<@MyTypeAnnotation Object>sort(l, c);

This uses Java’s existing syntax for specifying a method call’s type arguments.

180

../api/org/checkerframework/framework/qual/Covariant.html
../api/org/checkerframework/framework/qual/Covariant.html

30.1.8 The Bottom type

Many type systems have a *Bottom type that is used only for the null value, dead code, and some erroneous situations.
A programmer should rarely write the bottom type.

One use is on a lower bound, to indicate that any type qualifier is permitted. A lower-bounded wildcard indicates
that a consumer method can accept a collection containing any Java type above some Java type, and you can add the
bottom type qualifier as well:

public static void addNumbers (List<? super @SignednessBottom Integer> list) { ... }

30.2 Qualifier polymorphism for methods

Type qualifier polymorphism permits a single method to have multiple different qualified type signatures.
Here is where a polymorphic qualifier (e.g., @PolyNull) can be used:

e Polymorphic qualifiers are most often used in method signatures. See the examples below in Section [30.2.1]

e Polymorphic qualifiers can also be written in method bodies (implementations).

e If you can use generics, you typically do not need to use a polymorphic qualifier. Do not write a polymorphic
qualifier on a type variable declaration.

e Polymorphic qualifiers may not be used on a class declaration. To apply qualifier polymorphism to classes, use a
class qualifier parameter; see Section[30.3]

e A polymorphic qualifier may be used on a field declaration only in a class with a class qualifier parameter; see
Section

e If a class has a class qualifier parameter, then a polymorphic qualifier written on a method in the class has a
slightly different meaning, see Section[30.3.1]

Section [35.5.2]explains how to define a polymorphic qualifier.

30.2.1 Using polymorphic qualifiers in a method signature

A method whose signature has a polymorphic qualifier (such as @PolyNull) conceptually has multiple versions,
somewhat like the generics feature of Java or a template in C++. In each version, each instance of the polymorphic
qualifier has been replaced by the same other qualifier from the hierarchy.

The method body must type-check with all signatures. A method call is type-correct if it type-checks under any one
of the signatures. If a call matches multiple signatures, then the compiler uses the most specific matching signature for
the purpose of type-checking. This is the same as Java’s rule for resolving overloaded methods.

As an example of the use of @PolyNull, method Class.cast|returns null if and only if its argument is null:

@PolyNull T cast (@PolyNull Object obj) { ... }
This is like writing:

@NonNull T cast(@NonNull Object obj) { ... }
@Nullable T cast(@Nullable Object obj) { ... }

except that the latter is not legal Java, since it defines two methods with the same Java signature.
As another example, consider

// Returns null if either argument is null.
@PolyNull T max(€PolyNull T x, @PolyNull T y);

which is like writing
@NonNull T max(@NonNull T x, @NonNull T y);

@Nullable T max(@Nullable T x, @Nullable T vy);

181

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Class.html#cast(java.lang.Object)

At a call site, the most specific applicable signature is selected.

Another way of thinking about which one of the two max variants is selected is that the nullness annotations of (the
declared types of) both arguments are unified to a type that is a supertype of both, also known as the least upper bound
or lub. If both arguments are @NonNull, their unification (lub) is @NonNull, and the method return type is @NonNull.
But if even one of the arguments is @Nullable, then the unification (lub) is @Nullable, and so is the return type.

30.2.2 Relationship to subtyping and generics

Qualifier polymorphism has the same purpose and plays the same role as Java’s generics. You use them for the similar
reasons, such as:

e A method operates on collections with different types of elements.
e Two different arguments have the same type, without constraining them to be one specific type.
e A method returns a value of the same type as its argument.

If a method is written using Java generics, it usually does not need qualifier polymorphism. If you can use Java’s
generics, then that is often better. On the other hand, if you have legacy code that is not written generically, and you
cannot change it to use generics, then you can use qualifier polymorphism to achieve a similar effect, with respect to
type qualifiers only. The Java compiler still treats the base Java types non-generically.

In some cases, you don’t need qualifier polymorphism because subtyping already provides the needed functionality.
Stringis a supertype of @Interned String, so a method toUpperCase that is declared to take a St ring parameter
can also be called on an @Interned String argument.

30.2.3 Using multiple polymorphic qualifiers in a method signature

Usually, it does not make sense to write only a single instance of a polymorphic qualifier in a method definition:
if you write one instance of (say) @PolyNull, then you should use at least two. The main benefit of polymorphic
qualifiers comes when one is used multiple times in a method, since then each instance turns into the same type qualifier.
(Section[30.2.4]describes some exceptions to this rule: times when it makes sense to write a single polymorphic qualifier
in a signature.)

Most frequently, the polymorphic qualifier appears on at least one formal parameter and also on the return type.

It can also be useful to have polymorphic qualifiers on (only) multiple formal parameters, especially if the method
side-effects one of its arguments. For example, consider

void moveBetweenStacks (Stack<@PolyNull Object> sl, Stack<@PolyNull Object> s2) {
sl.push(s2.pop());
}

In this particular example, it would be cleaner to rewrite your code to use Java generics, if you can do so:

<T> void moveBetweenStacks (Stack<T> sl, Stack<T> s2) {
sl.push(s2.pop());

30.2.4 Using a single polymorphic qualifier in a method signature

As explained in Section[30.2.3] you will usually use a polymorphic qualifier multiple times in a signature. This section
describes situations when it makes sense to write just one polymorphic qualifier in a method signature. Some of these
situations can be avoided by writing a generic method, but in legacy code it may not be possible for you to change a
method to be generic.

182

Using a single polymorphic qualifier on a return type

It is unusual, but permitted, to write just one polymorphic qualifier, on a return type.
This is just like it is unusual, but permitted, to write just one occurrence of a generic type parameter, on a return
type. An example of such a method is/Collections.emptyList ()|

Using a single polymorphic qualifier on an element type

It can make sense to use a polymorphic qualifier just once, on an array or generic element type.
For example, consider a routine that returns the index, in an array, of a given element:

public static int indexOf (@PolyNull Object[] a, @Nullable Object elt) { ... }

If @PolyNull were replaced with either @Nullable or @NonNull, then one of these safe client calls would be
rejected:

@Nullable Object[] al;
@NonNull Object[] a2;

indexOf (al, someObject);
indexOf (a2, someObject);

Of course, it would be better style to use a generic method, as in either of these signatures:

public static <T extends @Nullable Object> int indexOf (T[] a, @Nullable Object elt) { ... }
public static <T extends @Nullable Object> int indexOf (T[] a, T elt) { ... }

Another example is a method that writes bytes to a file. It accepts an array of signed or unsigned bytes, and it
behaves identically for both:

void write (@PolySigned byte[] b) { ... }

These examples use arrays, but there are similar examples that use collections.

Don’t use a single polymorphic qualifier on a formal parameter type

There is no point to writing just one polymorphic qualifier in a method signature, as the main type qualifier on a formal
parameter type. Consider this signature:

void m(@PolyNull Object obj)
which expands to

void m(@NonNull Object obij)
void m(@Nullable Object obj)

This is no different (in terms of which calls to the method will type-check) than writing just
void m(@Nullable Object obij)
However, it does make sense to write a single polymorphic qualifier within a formal parameter type, as in
void m2a (List<@PolyNull MySubClass> strings)
which is similar to
void m2b (List<? extends @Nullable MySubClass> strings)

Method m2b () can be called on (for example) List<@Nullable MySubClass> and List<@NonNull MySubClass>,
which are not legal arguments to method m2a ().

183

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Collections.html#emptyList()

30.3 Class qualifier parameters

Class qualifier parameters permit you to supply a type qualifier (only, without a Java basetype) to any class (generic or
not).

When a generic class represents a collection, a user can write a type qualifier on the type argument, as in
List<@Tainted Character> versus List<@Untainted Character>. When a non-generic class represents a collec-
tion with a hard-coded type (as StringBuffer hard-codes Character), you can use a class qualifier parameter to
distinguish StringBuffers that contain different types of characters.

To add a qualifier parameter to a class, annotate its declaration with|@HasQualifierParameter and write the class
of the top qualifier as its element.

@HasQualifierParameter (Tainted.class)
class StringBuffer { ... }

A qualifier on a use of StringBuffer is treated as appearing both on the StringBuffer and on its conceptual type
argument. That is:
@Tainted StringBuffer &~ (@Tainted Collection<@Tainted Character>
@Untainted StringBuffer =~ (@Untainted Collection<@Untainted Character>

If two types have different qualifier arguments, they have no subtyping relationship. (This is “invariant subtyping”,
also used by Java for generic classes.) In particular, @Untainted StringBuffer is not a subtype of @Tainted
StringBuffer; an attempt to cast between them, in either direction, will yield an invariant.cast.unsafe error.

If a subclass extends a @HasQualifierParameter class (or implements a @HasQualifierParameter interface),
then the subclass must also be marked @HasQualifierParameter.

Within a class with a qualifier parameter, the default qualifier for uses of that class is the polymorphic qualifier.

30.3.1 Resolving polymorphism when the receiver type has a polymorphic qualifier

Qualifier polymorphism changes the rules for instantiating polymorphic qualifiers (Section [30.2)). If the receiver type
has a qualifier parameter and is annotated with a polymorphic qualifier, then at a call site all polymorphic annotations
are instantiated to the same qualifier as the type of the receiver expression of the method call. Otherwise, use the rules
of Section

For example, consider

@HasQualifierParameter (Tainted.class)
class Buffer {

void append(@PolyTainted Buffer this, @PolyTainted String s) { ... }
}

Because @PolyTainted applies to a type (Buf fer) with a qualifier parameter, all uses of @PolyTainted are instantiated
to the qualifiers on the type of the receiver expression at call sites to append. For example,

@Untainted Buffer untaintedBuffer = ...;
@Tainted String taintedString = ...;
untaintedBuffer.append(taintedString); // error: argument

The above append call is illegal because the @PolyTainted is instantiated to @Untainted and the type of the argument
is @Tainted which is a supertype of @Untainted. If the type of untaintedBuffer were @Tainted then the call would
be legal.

30.3.2 Using class qualifier parameters in the type of a field

To express that the type of a field should have the same qualifier as the class qualifier parameter, annotate the field type
with the polymorphic qualifier for the type system.

184

../api/org/checkerframework/framework/qual/HasQualifierParameter.html

@HasQualifierParameter (Tainted.class)
class Buffer {
@PolyTainted String field;

At a field access where the declared type of the field has a polymorphic qualifier, that polymorphic qualifier is
instantiated to the qualifier on the type of the receiver of the field access (or in the case of type variables, the qualifier
on the upper bound). That is, the qualifier on myBuffer.field is that same as that on myBuffer.

30.3.3 Local variable defaults for types with qualifier parameters

Local variables default to the top type (see Section[31.5.3). Type refinement determines if a variable can be treated as a
suitable subtype, and annotations on local variables are rarely needed as a result. However, since qualifier parameters add
invariant subtyping, type refinement is no longer valid. For example, suppose in the following code that StringBuffer
is annotated with @HasQualifierParameter (Tainted.class).

void method(@Untainted StringBuffer buffer) {
StringBuffer local = buffer;
executeSql (local.toString());

void executeSql (@Untainted String code) {
//
}

Normally, the framework would determine that local has type @Untainted StringBuffer and the call to
executeSql would be valid. However, since by default 1ocal has type @Tainted StringBuffer, and @Untainted
StringBuffer is not a subtype, no type refinement would be performed, leading to an error. Fixing this would require
manually annotating local as an @Untainted StringBuffer, increasing the annotation burden on programmers.

For this reason, local variables with types that have a qualifier parameter use different defaulting rules. When a local
variable has an initializer, the type of that initializer is used as the default type of that variable if no other annotations
are written. For example, in the above code, the type of 1ocal would be @Untainted StringBuffer. This eliminates
the need for type refinement.

30.3.4 Qualifier parameters by default

If many classes in a project should have @HasQualifierParameter, it’s possible to enable it on all classes in a package
by default. Writing @HasQualifierParameter on a package is equivalent to writing @HasQualifierParameter on
each class in that package and all subpackages with the same arguments.

For example, writing this annotation enables @HasQualifierParameter for all classes in mypackage.

@HasQualifierParameter (Tainted.class)
package mypackage;

When using @HasQualifierParameter on a package, it’s possible to disable it for a specific class using|@NoQualifierParameter
Writing this on a class indicates it has no class qualifier parameter and @HasQualifierParameter will not be enabled
by default. Like @HasQualifierParameter, it takes one or more top annotations. It is illegal to explicitly write both
@HasQualifierParameter and @NoQualifierParameter on the same class for the same hierarchy.

30.3.5 Types with qualifier parameters as type arguments

Types with qualifier parameters are only allowed as type arguments to type parameters whose upper bound have a
qualifier parameter. If they were allowed for as type arguments for any type parameter, then unsound casts would be
permitted. For example:

185

../api/org/checkerframework/framework/qual/NoQualifierParameter.html

@HasQualifierParameter (Tainted.class)
interface Buffer ({
void append(@PolyTainted String s);

public class ClassQPTypeVarTest {
<T> @Tainted T cast (T param) {
return param;

void bug(@Untainted Buffer b, @Tainted String s) {
cast (b) .append(s); // error

186

Chapter 31

Advanced type system features

This chapter describes features that are automatically supported by every checker written with the Checker Framework.
You may wish to skim or skip this chapter on first reading. After you have used a checker for a little while and want
to be able to express more sophisticated and useful types, or to understand more about how the Checker Framework
works, you can return to it.

31.1 Invariant array types

Java’s type system is unsound with respect to arrays. That is, the Java type-checker approves code that is unsafe and
will cause a run-time crash. Technically, the problem is that Java has “covariant array types”, such as treating String[]
as a subtype of Object []. Consider the following example:

String[] strings = new String[] {"hello"};
Object[] objects = strings;
objects[0] = new Object();
String myString = strs[0];

The above code puts an Object in the array strings and thence in myString, even though myString = new
Object () should be, and is, rejected by the Java type system. Java prevents corruption of the JVM by doing a
costly run-time check at every array assignment; nonetheless, it is undesirable to learn about a type error only via a
run-time crash rather than at compile time.

When you pass the -AinvariantArrays command-line option, the Checker Framework is stricter than Java, in
the sense that it treats arrays invariantly rather than covariantly. This means that a type system built upon the Checker
Framework is sound: you get a compile-time guarantee without the need for any run-time checks. But it also means that
the Checker Framework rejects code that is similar to what Java unsoundly accepts. The guarantee and the compile-time
checks are about your extended type system. The Checker Framework does not reject the example code above, which
contains no type annotations.

Java’s covariant array typing is sound if the array is used in a read-only fashion: that is, if the array’s elements are
accessed but the array is not modified. However, facts about read-only usage are not built into any of the type-checkers.
Therefore, when using type systems along with ~-AinvariantArrays, you will need to suppress any warnings that are
false positives because the array is treated in a read-only way.

31.2 Context-sensitive type inference for array constructors

When you write an expression, the Checker Framework gives it the most precise possible type, depending on the
particular expression or value. For example, when using the Regex Checker (Chapter[T3] page[I06), the string "hello"

187

is given type @Regex String because it is a legal regular expression (whether it is meant to be used as one or not) and
the string " (foo" is given the type @RegexBottom String because it is not a legal regular expression.

Array constructors work differently. When you create an array with the array constructor syntax, such as the
right-hand side of this assignment:

String[] myStrings = {"hello"};

then the expression does not get the most precise possible type, because doing so could cause inconvenience. Rather, its
type is determined by the context in which it is used: the left-hand side if it is in an assignment, the declared formal
parameter type if it is in a method call, etc.
In particular, if the expression {"hello"} were given the type @Regex String[], then the assignment would be
illegal! But the Checker Framework gives the type String[] based on the assignment context, so the code type-checks.
If you prefer a specific type for a constructed array, you can indicate that either in the context (change the declaration
of myStrings) or in a new construct (change the expression to new @Regex String[] {"hello"}).

31.3 Upper bound of qualifiers on uses of a given type (annotations on a
class declaration)

The examples in this section use the type qualifier hierarchy @A :> @B :> QC.

A qualifier on a use of a certain type must be a subtype or equal to the upper bound for that type. The upper bound
of qualifiers used on a given type is specified by annotating the type declaration with some qualifier — that is, by
writing an annotation on a class declaration.

@C class MyClass {}

This means that @B MyClass is an invalid type. (Annotations on class declarations may also specify default
annotations for uses of the type; see Section [31.5.1)

If it is not possible to annotate the class’s definition (e.g., for primitives and some library classes), the type-system
designer can specify an upper bound by using the meta-annotation @UpperBoundForl

If no annotation is present on a type declaration and if no @UpperBoundFor mentions the type, then the bound is
top. This can be changed by overriding AnnotatedTypeFactory#getTypeDeclarationBounds.

There are two exceptions.

e An expression can have a supertype of the upper bound; that is, some expression could have type @B MyClass.
This type is not written explicitly, but results from viewpoint adaptation.

e Using usual CLIMB-to-top rules, local variables of type MyClass default to @A MyClass. It is legal for @A
MyClass to be the type of a local variable. For consistency, users are allowed to write such a type on a local
variable declaration.

Due to existing type rules, an expression of type @A MyClass can only be used in limited ways.

e Since every field, formal parameter, and return type of type MyClass (or lower) is annotated as @B (or lower), it
cannot be assigned to a field, passed to a method, or returned from a method.

e It can be used in a context that requires €A Object (or whatever the least supertype is of MyClass for which the
@A qualifier is permitted). Examples include being tested against null or (for most type systems) being passed to
polymorphic routines such as System.out .println or System.identityHashCode.

These operations might refine its type. If a user wishes to annotate a method that does type refinement, its formal
parameter must be of illegal type @A MyClass, which requires a warning suppression.

If the framework were to forbid expressions and local variables from having types inconsistent with the class
annotation, then important APIs and common coding paradigms would no longer type-check.

Consider the annotation

@NonNull class Optional { ... }

188

../api/org/checkerframework/framework/qual/UpperBoundFor.html
../api/org/checkerframework/framework/type/AnnotatedTypeFactory.html#getTypeDeclarationBounds-javax.lang.model.type.TypeMirror-

and the client code

Map<String, Optional> m;

String key = ...;
Optional value = m.get (key);
if (value != null) {

The type of m.get (key) is @Nullable Optional, which is an illegal type. However, this is a very common
paradigm. Programmers should not need to rewrite the code to test m.containsKey (key) nor suppress a warning in
this safe code.

31.4 The effective qualifier on a type (defaults and inference)

A checker sometimes treats a type as having a slightly different qualifier than what is written on the type — especially if
the programmer wrote no qualifier at all. Most readers can skip this section on first reading, because you will probably
find the system simply “does what you mean”, without forcing you to write too many qualifiers in your program.
particular, programmers rarely write qualifiers in method bodies (except on type arguments and array component types).

The following steps determine the effective qualifier on a type — the qualifier that the checkers treat as being
present.

1. If a type qualifier is present in the source code, that qualifier is used.

2. If there is no explicit qualifier on a type, then a default qualifier is applied; see Section[31.5] Defaulted qualifiers
are treated by checkers exactly as if the programmer had written them explicitly.

3. The type system may refine a qualified type on a local variable — that is, treat it as a subtype of how it was
declared or defaulted. This refinement is always sound and has the effect of eliminating false positive error

messages. See Section

31.5 Default qualifier for unannotated types

An unannotated Java type is treated as if it had a default annotation. Both the type system designer and an end-user
programmer can control the defaulting. Defaulting never applies to uses of type variables, even if they do not have an
explicit type annotation. Most of this section is about defaults for source code that is read by the compiler. When the
compiler reads a .class file, different defaulting rules apply. See Section [31.5.6|for these rules.

There are several defaulting mechanisms, for convenience and flexibility. When determining the default qualifier for
a use of an unannotated type, MyClass, the following rules are used in order, until one applies.

1. The qualifier specified via @DefaultQualifierForUse on the declaration of MyClass. (Section[31.5.1)

2. If no @NoDefaultQualifierForUse is written on the declaration of MyClass, the qualifier explicitly written on

the declaration of MyClass. (Section|31.5.1])

The qualifier with a meta-annotation @DefaultFor (types = MyClass.class). (Section[31.5.1)

4. The qualifier with a meta-annotation @DefaultFor (typeKinds = KIND), where KIND is the TypeKind of
MyClass. (Section[3T.5.1)

5. The qualifier with a meta-annotation @DefaultFor (names = REGEX), where REGEX matches the name of the
variable being defined (if any). For return types, the name of the method is used. (Section

6. The qualifier in the innermost user-written @DefaultQualifier for the location of the use of MyClass. (Sec-
tion[31.5.2)

7. The qualifier in the meta-annotation @DefaultFor for the location of the use of MyClass. These are defaults
specified by the type system designer (Section [35.5.4); this is usually CLIMB-to-top (Section[31.5.3).

8. The qualifier with the meta-annotation @DefaultQualifierInHierarchy.

b

189

../api/org/checkerframework/framework/qual/DefaultQualifierInHierarchy.html

If the unannotated type is the type of a local variable, then the first 5 rules are skipped and only rules 6 and 7 apply.
If rule 6 applies, it makes the type of local variables top so they can be refined.

31.5.1 Default for use of a type

The type declaration annotation @DefaultQualifierForUse|indicates that the specified qualifier should be added to
all unannotated uses of the type.
For example:

@DefaultQualifierForUse (B.class)
class MyClass {}

This means any unannotated use of MyClass is treated as @B MyClass by the checker. (Except for locals, which
can be refined.)

Similarly, the meta-annotation @DefaultFor can be used to specify defaults for uses of types, using the types
element, or type kinds, using the typeKinds elements.

Interaction between qualifier bounds and DefaultQualifierForUse:

e If a type declaration is annotated with a qualifier bound, but not a @DefaultQualifierForUse, then the qualifier
bound is added to all unannotated uses of that type (except locals). For example, @C class MyClass is
equivalent to

@DefaultQualifierForUse(C.class)
@C class MyClass {}

e If the qualifier bound should not be added to all unannotated uses, then|@NoDefaultQualifierForUse|should
be written on the declaration:

@NoDefaultQualifierForUse
@C class MyClass {}

This means that unannotated uses of MyClass are defaulted normally.
e If neither @DefaultQualifierForUse nor a qualifier bound is present on a type declaration, that is equivalent
to writing @NoDefaultQualifierForUse.

31.5.2 Controlling defaults in source code

The end-user programmer specifies a default qualifier by writing the @DefaultQualifier/(ClassName, [locations])

annotation on a package, class, method, or variable declaration. The argument to |@DefaultQualifier|is the Class

name of an annotation. The optional second argument indicates where the default applies. If the second argument is

omitted, the specified annotation is the default in all locations. See the Javadoc of DefaultQualifier for details.
For example, using the Nullness type system (Chapter [3):

import org.checkerframework.framework.qual.DefaultQualifier;
import org.checkerframework.checker.nullness.qual.NonNull;

@efaultQualifier (NonNull.class)
class MyClass {

public boolean compile(File myFile) { // myFile has type "@NonNull File"

if (!myFile.exists()) // no warning: myFile is non-null
@Nullable File srcPath = ...; // must annotate to specify "@Nullable File"
if (srcPath.exists()) // warning: srcPath might be null

190

../api/org/checkerframework/framework/qual/DefaultQualifierForUse.html
../api/org/checkerframework/framework/qual/DefaultFor.html
../api/org/checkerframework/framework/qual/NoDefaultQualifierForUse.html
../api/org/checkerframework/framework/qual/DefaultQualifier.html
../api/org/checkerframework/framework/qual/DefaultQualifier.html
../api/org/checkerframework/framework/qual/DefaultQualifier.html

@DefaultQualifier(Tainted.class)
public boolean isJavaFile(File myfile) { // myFile has type "@Tainted File"

You may write multiple |(@DefaultQualifier|annotations at a single location.
If @DefaultQualifier[s] is placed on a package (via the package-info. java file), then it applies to the given
package and all subpackages.

31.5.3 Defaulting rules and CLIMB-to-top

Each type system defines a default qualifier (see Section[35.5.4). For example, the default qualifier for the Nullness
Checker is @NonNull. When a user writes an unqualified type such as Date, the Nullness Checker interprets it as
@NonNull Date.

The type system applies that default qualifier to most but not all type uses. In particular, unless otherwise stated,
every type system uses the CLIMB-to-top rule. This rule states that the top qualifier in the hierarchy is the default for
the CLIMB locations: Casts, Locals, and (some) Implicit Bounds. For example, when the user writes an unqualified
type such as Date in such a location, the Nullness Checker interprets it as @Nullable Date (because @Nullable is
the top qualifier in the hierarchy, see Figure[3.T). (Casts are treated a bit specially; see below.)

The CLIMB-to-top rule is used only for unannotated source code that is being processed by a checker. For
unannotated libraries (code read by the compiler in . class or . jar form), see Section[31.5.6]

The rest of this section explains the rationale and implementation of CLIMB-to-top.

Here is the rationale for CLIMB-to-top:

e Local variables are defaulted to top because type refinement (Section is applied to local variables. If a
local variable starts as the top type, then the Checker Framework refines it to the best (most specific) possible
type based on assignments to it. As a result, a programmer rarely writes an explicit annotation on any of those
locations.

Variables defaulted to top include local variables, resource variables in the try-with-resources construct, variables
in for statements, and catch arguments (known as exception parameters in the Java Language Specification).
Exception parameters default to the top type because they might catch an exception thrown anywhere in the
program.

An alternate design for exception parameters would be to default exception parameters some other type T (instead
of the top type); then the Checker Framework would need to issue a warning at every throw statement whose
argument might not be a subtype of T. A checker can implement this alternate design by overriding a few methods.
The alternative is not appropriate for all type systems. The alternative is unsound for deep type systems because
the JDK’s annotations are trusted rather than checked. A deep type system is one where the type of a field can
determine the type of its containing instance, such as tainting, Example: a user passes a secret regex to the JDK,
and the JDK throws a format exception that includes the regex. This could be caught by a catch clause in the
program whose exception parameter is not annotated as secret. As another example, the user passes a secret
integer and the JDK throws a DivideByZeroException that reveals the value.

e Cast types are defaulted to the same type as their argument expression. This has the same effect as if they
were given the top type and then flow-sensitively refined to the type of their argument. However, note that
programmer-written type qualifiers are not refined, so writing the top annotation is not the same as writing no
annotation.

e Implicit upper bounds are defaulted to top to allow them to be instantiated in any way. If a user declared
class C<T> { ... },then the Checker Framework assumes that the user intended to allow any instantiation
of the class, and the declaration is interpreted as class C<T extends @Nullable Object> { ... } rather
than as class C<T extends @NonNull Object> { ... }. The latter would forbid instantiations such as
C<@Nullable String>, or would require rewriting of code. On the other hand, if a user writes an explicit bound

191

../api/org/checkerframework/framework/qual/DefaultQualifier.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/Nullable.html

such as class C<T extends D> { ... }, then the user intends some restriction on instantiation and can write
a qualifier on the upper bound as desired.
This rule means that the upper bound of class C<T> is defaulted differently than the upper bound of class
C<T extends Object>. This is a bit unfortunate, but it is the least bad option. The more confusing alternative
would be for “Object” to be defaulted differently in class C<T extends Object> and in an instantiation
C<Object>, and for the upper bounds to be defaulted differently in class C<T extends Object> and class
C<T extends Date>.

e Implicit lower bounds are defaulted to the bottom type, again to allow maximal instantiation. Note that Java does
not allow a programmer to express both the upper and lower bounds of a type, but the Checker Framework allows
the programmer to specify either or both; see Section[30.1.2]

Al@DefaultQualifier that specifies a CLIMB-to-top location takes precedence over the CLIMB-to-top rule.
Here is how the Nullness Checker overrides part of the CLIMB-to-top rule:

@DefaultQualifierInHierarchy
@efaultFor ({ TypeUseLocation.EXCEPTION_PARAMETER })
public @interface NonNull {}

public @interface Nullable {}

As mentioned above, the exception parameters are always non-null, so @DefaultFor ({ TypeUseLocation.EXCEPTION_PARAMETER
}) on @NonNull overrides the CLIMB-to-top rule.

31.5.4 Inherited defaults

When overriding a method, programmers must fully specify types in the overriding method, which duplicates information
on the overridden method. By contrast, declaration annotations that are meta-annotated with @InheritedAnnotation
are inherited by overriding methods.

An example for type annotations is that when defining an equals () method, programmers must write the type
annotation @Nullable:

public boolean equals(@Nullable Object obj) {

An alternate design would be for every annotation on a superclass member to to be automatically inherited by
subclasses that override it.

The alternate design would reduce annotation effort.

The alternate design would reduce program comprehensibility. Currently, a user can determine the annotation on a
parameter or return value by looking at a single file. If annotations could be inherited from supertypes, then a user would
have to examine all supertypes, and do computations over them, to understand the meaning of an unannotated type in a
given file. For declaration annotations, no computation is necessary; that is why they may be inherited. Computation is
necessary for type annotations because different annotations might be inherited from a supertype and an interface, or
from two interfaces. For return types, the inherited type should be the least upper bound of all annotations on overridden
implementations in supertypes. For method parameters, the inherited type should be the greatest lower bound of all
annotations on overridden implementations in supertypes. In each case, the Checker Framework would need to issue an
error if no such annotations existed.

Because a program is read more often than it is edited/annotated, the Checker Framework does not currently support
the alternate design. In the future, this feature may be added.

192

../api/org/checkerframework/framework/qual/DefaultQualifier.html

31.5.5 Inherited wildcard annotations

If a wildcard is unbounded and has no annotation (e.g. List<?>), the annotations on the wildcard’s bounds are copied
from the type parameter to which the wildcard is an argument.
For example, the two wildcards in the declarations below are equivalent.

class MyList<@Nullable T extends @Nullable Object> {}

MyList<?> listOfNullables;
MyList<@Nullable ? extends @Nullable Object> listOfNullables;

The Checker Framework copies these annotations because wildcards must be within the bounds of their corre-
sponding type parameter. By contrast, if the bounds of a wildcard were defaulted differently from the bounds of its
corresponding type parameter, then there would be many false positive type . argument warnings.

Here is another example of two equivalent wildcard declarations:

class MyList<@Regex (5) T extends @Regex(l) Object> {}

MyList<?> listOfRegexes;
MyList<@Regex (5) ? extends @Regex(l) Object> listOfRegexes;

Note, this copying of annotations for a wildcard’s bounds applies only to unbounded wildcards. The two wildcards
in the following example are equivalent.

class MyList<@NonNull T extends @Nullable Object> {}

MyList<? extends Object> listOfNonNulls;
MyList<@NonNull ? extends @NonNull Object> 1listOfNonNulls2;

Note, the upper bound of the wildcard ? extends Object is defaulted to @NonNull using the CLIMB-to-top rule
(see Section[31.5.3)). Also note that the MyList class declaration could have been more succinctly written as: class
MyList<T extends @Nullable Object> where the lower bound is implicitly the bottom annotation: @NonNull.

31.5.6 Default qualifiers for . class files (library defaults)

(Note: Currently, the conservative library defaults presented in this section are off by default and can be turned on by sup-
plying the -AuseConservativeDefaultsForUncheckedCode=bytecode command-line option. In a future release,
they will be turned on by default and it will be possible to turn them off by supplying a -AuseConservativeDefaultsForUncheckedCode
command-line option.)

The defaulting rules presented so far apply to source code that is read by the compiler. When the compiler reads a
.class file, different defaulting rules apply.

If the checker was run during the compiler execution that created the . class file, then there is no need for defaults:
the .class file has an explicit qualifier at each type use. (Furthermore, unless warnings were suppressed, those
qualifiers are guaranteed to be correct.) When you are performing pluggable type-checking, it is best to ensure that the
compiler only reads such . class files. Section[34.4]discusses how to create annotated libraries.

If the checker was not run during the compiler execution that created the .class file, then the . class file contains
only the type qualifiers that the programmer wrote explicitly. (Furthermore, there is no guarantee that these qualifiers
are correct, since they have not been checked.) In this case, each checker decides what qualifier to use for the locations
where the programmer did not write an annotation. Unless otherwise noted, the choice is:

e For method parameters and lower bounds, use the bottom qualifier (see Section [35.5.7).
e For method return values, fields, and upper bounds, use the top qualifier (see Section [35.5.7).

193

These choices are conservative. They are likely to cause many false-positive type-checking errors, which will help
you to know which library methods need annotations. You can then write those library annotations (see Chapter [34) or
alternately suppress the warnings (see Chapter 32)).

For example, an unannotated method

String concatenate(String pl, String p2)
in a classfile would be interpreted as
@Top String concatenate (@Bottom String pl, @Bottom String p2)

There is no single possible default that is sound for fields. In the rare circumstance that there is a mutable public
field in an unannotated library, the Checker Framework may fail to warn about code that can misbehave at run time.

31.6 Annotations on constructors

31.6.1 Annotations on constructor declarations
An annotation on the “return type” of a constructor declaration indicates what the constructor creates. For example,

@B class MyClass f{
@C MyClass() {}
}

means that invoking that constructor creates a @C MyClass.

The Checker Framework cannot verify that the constructor really creates such an object, because the Checker
Framework does not know the type-system-specific semantics of the @C annotation. Therefore, if the constructor result
type is different than the top annotation in the hierarchy, the Checker Framework will issue a warning. The programmer
should check the annotation manually, then suppress the warning.

Defaults

If a constructor declaration is unannotated, it defaults to the same type as that of its enclosing class (rather than the
default qualifier in the hierarchy). For example, the Tainting Checker (Chapter[I0) has @Tainted as its default qualifier.
Consider the following class:

@Untainted class MyClass {
MyClass () {}
}

The constructor declaration is equivalent to @Untainted MyClass() {}.
The Checker Framework produces the same error messages for explicitly-written and defaulted annotations.

31.6.2 Annotations on constructor invocations

The type of a method call expression x.myMethod (y, z) is determined by the return type of the declaration of
myMethod. There is no way to write an annotation on the call to change its type. However, it is possible to write a cast:
(@Anno SomeType) x.myMethod(y, z).The Checker Framework will issue a warning that it cannot verify that the
downcast is correct. The programmer should manually determine that the annotation is correct and then suppress the
warning.

A constructor invocation new MyClass () is also a call, so its semantics are similar. The type of the expression is
determined by the annotation on the result type of the constructor declaration. It is possible to write a cast (€@Anno
MyClass) new MyClass(). The syntax new @Anno MyClass() is shorthand for the cast. For either syntax, the
Checker Framework will issue a warning that it cannot verify that the cast is correct. The programmer may suppress the
warning if the code is correct.

194

31.7 Type refinement (flow-sensitive type qualifier inference)

A checker can sometimes deduce that an expression’s type is more specific than — that is, a subtype of — its declared
or defaulted (Section [31.5). This is called “flow-sensitive type refinement” or “local type inference”.

Due to local type refinement, a programmer typically does not write any qualifiers on local variables within a method
body (except on type arguments and array component types). However, the programmer must write type annotations
for method signatures (arguments and return values) and fields, unless the default annotations are correct. Local type
refinement does not change the source code; it re-runs every time you run a checker.

31.7.1 Type refinement examples

Here is an example for the Nullness Checker (Chapter 3] page [30). myVar is declared as @Nullable String, butitis
treated as @NonNull String within the body of the if test.

@Nullable String myVar;
// myVar has type @Nullable String here.
myVar.hashCode () ; // warning: possible dereference of null.

if (myVar != null) {
// myVar has type @NonNull String here.
myVar.hashCode(); // no warning.

}

Here is another example. Note that the same expression may yield a warning or not depending on its context (that is,
depending on the current type refinement).

@Nullable String myVar;

// myVar has type @Nullable String
myVar = "hello";
// myVar has type @NonNull String
myVar.hashCode () ; // no warning

myVar = myMap.get (someKey) ;
// myVar has type @Nullable String
myVar.hashCode () ; // warning: posible dereference of null

Type refinement applies to every checker, including new checkers that you write. Here is an example for the Regex
Checker (Chapter [I3] page [I06):

void m2 (@Unannotated String s) {
s = RegexUtil.asRegex (s, 2); // asRegex throws an exception if its argument is not
// a regex with the given number of capturing groups
// s now has type "@Regex(2) String"

31.7.2 Type refinement behavior
The checker treats a variable or expression as a subtype of its declared type:

e starting at the time that it is assigned a value, a method establishes a postcondition (e.g., as expressed by
@EnsuresNonNull|or @EnsuresQualifierIf), or a run-time check is performed (e.g., via an assertion or if
statement).

e until its value might change (e.g., via an assignment, or because a method call might have a side effect).

195

../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/framework/qual/EnsuresQualifierIf.html

The checker never treats a variable as a supertype of its declared type. For example, an expression with declared
type @NonNull|type is never treated as possibly-null, and such an assignment is always illegal.

The functionality has a variety of names: type refinement, flow-sensitive type qualifier inference, local type
inference, and sometimes just “flow”.

31.7.3 Which types are refined

You generally do not need to annotate the top-level type of a local variable. You do need to annotate its type arguments
or array element types. (Type refinement does not change them, because doing so would not produce a subtype, as
explained in see Section [30.1.6]and Section[31.1]) Type refinement works within a method, so you still need to annotate
method signatures (parameter and return type) and field types.

If you find examples where you think a value should be inferred to have (or not have) a given annotation, but the
checker does not do so, please submit a bug report (see Section [39.2) that includes a small piece of Java code that
reproduces the problem.

Fields and type refinement

Type refinement infers the type of fields in some restricted cases:

o A final initialized field: Type inference is performed for final fields that are initialized to a compile-time constant
at the declaration site; so the type of protocol is @NonNull String in the following declaration:

public final String protocol = "https";

Such an inferred type may leak to the public interface of the class. If you wish to override such behavior, you can
explicitly insert the desired annotation, e.g.,

public final @Nullable String protocol = "https";

e Within method bodies: Type inference is performed for fields in the context of method bodies, like local variables
or any other expression. Consider the following example, where updatedAt is a nullable field:

class DBObject {
@Nullable Date updatedAt;

void m() {
// updatedAt is @Nullable, so warning about .getTime ()
. updatedAt.getTime() ... // warning about possible NullPointerException

if (updatedAt == null) {
updatedAt = new Date();
}

// updatedAt is now @NonNull, so .getTime() call is OK
. updatedAt.getTime ()

}
A method call may invalidate inferences about field types; see Section[31.7.3]

31.7.4 Run-time tests and type refinement

Some type systems support a run-time test that the Checker Framework can use to refine types within the scope of a
conditional such as if, after an assert statement, etc.

Whether a type system supports such a run-time test depends on whether the type system is computing properties of
data itself, or properties of provenance (the source of the data). An example of a property about data is whether a string

196

../api/org/checkerframework/checker/nullness/qual/NonNull.html

is a regular expression. An example of a property about provenance is units of measure: there is no way to look at the
representation of a number and determine whether it is intended to represent kilometers or miles.
Type systems that support a run-time test are:

Nullness Checker for null pointer errors (see Chapter 3] page [30)

Map Key Checker to track which values are keys in a map (see Chapter [d] page[52)

Optional Checker for errors in using the Optional|type (see Chapter[5] page[57)

Lock Checker for concurrency and lock errors (see Chapter[TT] page[84)

Index Checker for array accesses (see Chapter[I2] page [06)

Resource Leak Checker for ensuring that resources are disposed of properly (see Chapter 8] page[70)

Regex Checker to prevent use of syntactically invalid regular expressions (see Chapter[13] page

Format String Checker to ensure that format strings have the right number and type of % directives (see Chapter[T4]
page[109)

Internationalization Format String Checker to ensure that i18n format strings have the right number and type of
{} directives (see Chapter[T3] page[I16)

Type systems that do not currently support a run-time test, but could do so with some additional implementation

work,

are

e Interning Checker for errors in equality testing and interning (see Chapter [6] page [59)
e Property File Checker to ensure that valid keys are used for property files and resource bundles (see Chapter[T6]

page|122)

e Internationalization Checker to ensure that code is properly internationalized (see Chapter[16.2] page [I23)
e Signature String Checker to ensure that the string representation of a type is properly used, for example in

Class.forName (see Chapter[I7] page [125).
Constant Value Checker to determine whether an expression’s value can be known at compile time (see Chapter[22]

page|143)

Type systems that cannot support a run-time test are:

Initialization Checker to ensure all fields are set in the constructor (see Chapter [3.8] page B)

Called Methods Checker for the builder pattern (see Chapter [7] page [65)

Fake Enum Checker to allow type-safe fake enum patterns and type aliases or typedefs (see Chapter[9] page [77)
Tainting Checker for trust and security errors (see Chapter[T0] page [ST)

GUI Effect Checker to ensure that non-GUI threads do not access the UI, which would crash the application (see
Chapter (18] page[128)

Units Checker to ensure operations are performed on correct units of measurement (see Chapter [T9] page[133)
Signedness Checker to ensure unsigned and signed values are not mixed (see Chapter [20] page

Purity Checker to identify whether methods have side effects (see Chapter [21] page [T4T)

Initialized Fields Checker to ensure all fields are set in the constructor (see Chapter [3.8] page

Aliasing Checker to identify whether expressions have aliases (see Chapter [26] page [[58)

Must Call Checker to over-approximate the methods that should be called on an object before it is de-allocated

(see Chapter [27] page [162))
Subtyping Checker for customized checking without writing any code (see Chapter 28] page[163)

31.7.5 Side effects, determinism, purity, and type refinement

Calling a method typically causes the checker to discard its knowledge of the refined type, because the method might
assign a field. The @SideEffectFree annotation indicates that the method has no side effects, so calling it does not
invalidate any dataflow facts.

Calling a method twice might have different results, so facts known about one call cannot be relied upon at another
call. The @Deterministic annotation indicates that the method returns the same result every time it is called on the
same arguments.

197

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html
../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/Deterministic.html

@Pure means both @SideEffectFreeland|@Deterministicl The @TerminatesExecution annotation indicates
that a given method never returns. This can enable the type refinement to be more precise.

Chapter 21] gives more information about these annotations. This section explains how to use them to improve type
refinement.

Side effects

Consider the following declarations and uses:

@Nullable Object myField;
int computevalue() { ... }
void m() {

if (myField != null) {
// The type of myField is now "@NonNull Object™.
int result = computeValue();
// The type of myField is now "@Nullable Object",
// because computeValue might have set myField to null.
myField.toString(); // Warning: possible null pointer exception.

}

There are three ways to express that computeValue does not set myField to null, and thus to prevent the Nullness
Checker from issuing a warning about the call myField.toString ().

1. If computevalue has no side effects, declare the method as|@SideEffectFree:

@SideEffectFree
int computevValue() { ... }

The Nullness Checker issues no warnings, because it can reason that the second occurrence of myField has the
same (non-null) value as the one in the test.

2. If no method resets myField to null after it has been initialized to a non-null value (even if a method has some
other side effect), declare the field as @MonotonicNonNull:

@MonotonicNonNull Object myField;

3. If computeValue sets myField to a non-null value (or maintains it as a non-null value), declare the method as
@EnsuresNonNull:

@EnsuresNonNull ("myField")
int computevValue() { ... }

If computeValue maintains myField as a non-null value, even if it might have other side effects and even if
other methods might set myField to null, declare it as

@RequiresNonNull ("myField")
@EnsuresNonNull ("myField")
int computevalue() { ... }

Deterministic methods

Consider the following declaration and uses:

198

../api/org/checkerframework/dataflow/qual/Pure.html
../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/Deterministic.html
../api/org/checkerframework/dataflow/qual/TerminatesExecution.html
../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html

@Nullable Object getField(Object arg) { ... }
void m() {

if (x.getField(y) != null) {
x.getField(y) .toString(); // warning: possible null pointer exception

The Nullness Checker issues a warning regarding the toString () call, because its receiver x.getField (y) might
be null, according to the @Nullable return type in the declaration of getField. The Nullness Checker cannot assume
that getField returns non-null on the second call, just based on the fact that it returned non-null on the first call.

To indicate that a method returns the same value each time it is called on the same arguments, use the|@Deterministic
annotation. Actually, it is necessary to use @Pure/which means both @Deterministic and @SideEffectFree, because
otherwise the first call might change a value that the method depends on.

If you change the declaration of getField to

@Pure
@Nullable Object getField(Object arg) { ... }

then the Nullness Checker issues no warnings. Because getField is @SideEffectFree, the values of x and y are the
same at both invocations. Because getField is @Deterministic, the two invocations of x.getField(y) have the
same value. Therefore, x.getField (y) is non-null within the then branch of the if statement.

31.7.6 Assertions

If your code contains an assert statement, then your code could behave in two different ways at run time, depending
on whether assertions are enabled or disabled via the -ea or ~da command-line options to java.

By default, the Checker Framework outputs warnings about any error that could happen at run time, whether
assertions are enabled or disabled.

If you supply the ~AassumeAssertionsAreEnabled command-line option, then the Checker Framework assumes
assertions are enabled. If you supply the -AassumeAssertionsAreDisabled command-line option, then the Checker
Framework assumes assertions are disabled. You may not supply both command-line options. It is uncommon to supply
either one.

These command-line arguments have no effect on processing of assert statements whose message contains the
text @AssumeAssertion; see Section[32.2]

31.8 Writing Java expressions as annotation arguments

Sometimes, it is necessary to write a Java expression as the argument to an annotation. The annotations that take a Java
expression as an argument include:

@RequiresQualifier
@EnsuresQualifier
@EnsuresQualifierIf
@RequiresNonNull
@EnsuresNonNull
@EnsuresNonNullIf
@KeyFor
@EnsuresKeyFor
@EnsuresKeyForIf
@Il8nFormatFor

199

../api/org/checkerframework/dataflow/qual/Deterministic.html
../api/org/checkerframework/dataflow/qual/Pure.html
../api/org/checkerframework/framework/qual/RequiresQualifier.html
../api/org/checkerframework/framework/qual/EnsuresQualifier.html
../api/org/checkerframework/framework/qual/EnsuresQualifierIf.html
../api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
../api/org/checkerframework/checker/nullness/qual/EnsuresKeyFor.html
../api/org/checkerframework/checker/nullness/qual/EnsuresKeyForIf.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nFormatFor.html

@EnsuresLockHeld
@EnsuresLockHeldIf
@GuardedBy
@Holding

The set of permitted expressions is a subset of all Java expressions, with a few extensions. The extensions are formal
parameters like #1 and (for some type systems) <self>.

this, the receiver object. You can write this to annotate any variable or declaration where you could write this
in code. Notably, it cannot be used in annotations on declarations of static fields or methods. For a field, this is
the field’s receiver (sometimes called its container). For a local variable, it is the method’s receiver.

super, the receiver object as seen from the superclass. This can be used to refer to fields shadowed in the subclass
(although shadowing fields is discouraged in Java).

<self>, the value of the annotated reference (non-primitive) variable. Currently only defined for the €GuardedBy
type system. For example, @GuardedBy ("<self>") Object o indicates that the value referenced by o is
guarded by the intrinsic (monitor) lock of the value referenced by o.

a formal parameter, e.g., #2. It is represented as # followed by the one-based parameter index. For example: #1,
#3. It is not permitted to write #0 to refer to the receiver object; use this instead.

The formal parameter syntax #1 is less natural in source code than writing the formal parameter name. This
syntax is necessary for separate compilation, because no formal parameter name information is available in
a .class file. Suppose an annotated method m has already been compiled into a .class file, perhaps by a
compilation that did not use the Checker Framework. When a client of m is later compiled, it cannot interpret a
formal parameter name, but it can interpret a number.

Within a method body, you may use the formal parameter name. The formal parameter name never works
within a method signature or for a contract (pre- or post-condition) annotation; in those locations, an identifier is
interpreted as a field name (not a formal parameter).

a local variable, e.g., myLocalVar. The variable must be in scope; for example, a method annotation on method
m cannot mention a local variable that is declared inside m.

e a static variable, e.g., System.out. Write the class name and the variable.

s

a field of any expression. For example: next, this.next, #1.next. You may optionally omit a leading “this.”,
just as in Java. Thus, this.next and next are equivalent.

an array access. For example: this.myArray[i], vals[#1].

an array creation. For example: new int[10], new String[] "a", "b".

literals: string, integer, char, long, float, double, null, class literals.

a method invocation on any expression. This even works for overloaded methods and methods with type
parameters. For example: m1 (x, y.z, #2),a.m2("hello").

Currently, the Checker Framework cannot prove all contracts about method calls, so you may need to suppress
some warnings.

One unusual feature of the Checker Framework’s Java expressions is that a method call is allowed to have side
effects. Other tools forbid methods with side effects (and doing so is necessary if a specification is going to
be checked at run time via assertions). The Checker Framework enables you to state more facts. For example,
consider the annotation on java.io.BufferedReader.ready():

@EnsuresNonNullIf (expression="readLine ()", result=true)
@Pure public boolean ready() throws IOException { ... }

This states that if readLine () is called immediately after ready () returns true, then readLine () returns a
non-null value.

e a binary expression, e.g., x + y or <#l - 1>. These are used by the Index Checker, for example.
e a class name expression within another expression, e.g., “String” in String.class or “pkg.MyClass” in

pkg.MyClass.staticField. The class name must be fully-qualified unless it can be referenced by its simple
name without an import statement at the location where the annotation appears. For example, an annotation in
class C can use the simple name of a class in java.lang or in the same package as C.

200

../api/org/checkerframework/checker/lock/qual/EnsuresLockHeld.html
../api/org/checkerframework/checker/lock/qual/EnsuresLockHeldIf.html
../api/org/checkerframework/checker/lock/qual/GuardedBy.html
../api/org/checkerframework/checker/lock/qual/Holding.html

Limitations: It is not possible to write a quantification over all array components (e.g., to express that all array
elements are non-null). There is no such Java expression, but it would be useful when writing specifications.

31.9 Field invariants

Sometimes a field declared in a superclass has a more precise type in a subclass. To express this fact, write
@FieldInvariant| on the subclass. It specifies the field’s type in the class on which this annotation is written.
The field must be declared in a superclass and must be final.

For example,

class Person {
final @Nullable String nickname;
public Person(@Nullable String nickname) {
this.nickname = nickname;

// A rapper always has a nickname.
@FieldInvariant (qualifier = NonNull.class, field = "nickname")
class Rapper extends Person {

public Rapper (String nickname) {

super (nickname) ;
}
void method() {
. nickname.length() ... // legal, nickname is non-null in this class.

}

A field invariant annotation can refer to more than one field. For example, @FieldInvariant (qualifier = NonNull.class,
field = {fieldA, fieldB}) means that fieldA and fieldB are both non-null in the class upon which the an-
notation is written. A field invariant annotation can also apply different qualifiers to different fields. For example,
@FieldInvariant (qualifier = {NonNull.class, Untainted.class}, field = {fieldA, fieldB}) means
that fieldA is non-null and fieldB is untainted.

This annotation is inherited: if a superclass is annotated with @FieldInvariant, its subclasses have the same anno-
tation. If a subclass has its own @FieldInvariant, then it must include the fields in the superclass annotation and those
fields’ annotations must be a subtype (or equal) to the annotations for those fields in the superclass @FieldInvariant.

Currently, the @FieldInvariant annotation is trusted rather than checked. In other words, the @FieldInvariant
annotation introduces a loophole in the type system, which requires verification by other means such as manual
examination.

31.10 Unused fields

In an inheritance hierarchy, subclasses often introduce new methods and fields. For example, a Marsupial (and its
subclasses such as Kangaroo) might have a variable pouchSize indicating the size of the animal’s pouch. The field
does not exist in superclasses such as Mammal and Animal, so Java issues a compile-time error if a program tries to
access myMammal.pouchSize.

If you cannot use subtypes in your program, you can enforce similar requirements using type qualifiers. For fields,
use the @Unused annotation (Section [31.10.T), which enforces that a field or method may only be accessed from a
receiver expression with a given annotation (or one of its subtypes). For methods, annotate the receiver parameter this;
then a method call type-checks only if the actual receiver is of the specified type.

Also see the discussion of typestate checkers, in Chapter [29.30]

201

../api/org/checkerframework/framework/qual/FieldInvariant.html

31.10.1 @EUnused annotation

A Java subtype can have more fields than its supertype. For example:

class Animal {}
class Mammal extends Animal { ... }
class Marsupial extends Mammal {
int pouchSize; // pouch capacity, in cubic centimeters

You can simulate the same effect for type qualifiers: the @Unused annotation on a field declares that the field may
not be accessed via a receiver of the given qualified type (or any supertype). For example:

class Animal {
@Unused (when=Mammal.class)
int pouchSize; // pouch capacity, in cubic centimeters

}
@interface Mammal {}
@interface Marsupial {}

@Marsupial Animal joey = ...;
joey.pouchSize ... // OK
@Mammal Animal mae = ...;
. mae.pouchSize ... // compile-time error

The above class declaration is like writing

class @Mammal-Animal { ... }
class @Marsupial-Animal {
int pouchSize; // pouch capacity, in cubic centimeters

202

../api/org/checkerframework/framework/qual/Unused.html

Chapter 32
Suppressing warnings

When the Checker Framework reports a warning, it’s best to fix the underlying problem, by changing the code or its
annotations. For each warning, follow the methodology in Section [2.4.3]to correct the underlying problem.

This section describes what to do if the methodology of Section [2.4.5] indicates that you need to suppress the
warning. You won’t change your code, but you will prevent the Checker Framework from reporting this particular
warning to you. (Changing the code to fix a bug is another way to prevent the Checker Framework from issuing a
warning, but it is not what this chapter is about.)

You may wish to suppress checker warnings because of unannotated libraries or un-annotated portions of your
own code, because of application invariants that are beyond the capabilities of the type system, because of checker
limitations, because you are interested in only some of the guarantees provided by a checker, or for other reasons.
Suppressing a warning is similar to writing a cast in a Java program: the programmer knows more about the type than
the type system does and uses the warning suppression or cast to convey that information to the type system.

You can suppress a warning message in a single variable initializer, method, or class by using the following
mechanisms:

e the @SuppressWarnings annotation (Section|32.1)), or
o the @AssumeAssertion string in an assert message (Section [32.2)).

You can suppress warnings throughout the codebase by using the following mechanisms:

the -AsuppressWarnings command-line option (Section [32.3),

the ~AskipUses and -AonlyUses command-line options (Section[32.4),

the ~AskipDefs and ~AonlyDefs command-line options (Section[32.5),

the -AuseConservativeDefaultsForUncheckedCode=source command-line option (Section@,
the -Alint command-line option enables/disables optional checks (Section [32.6),

changing the specification of a method (Section[32.7)), or

not running the annotation processor (Section [32.§).

Some type checkers can suppress warnings via
e checker-specific mechanisms (Section[32.9).

The rest of this chapter explains these mechanisms in turn.
You can use the -AwarnUnneededSuppressions command-line option to issue a warning if a @SuppressWarnings
did not suppress any warnings issued by the current checker.

32.1 @SuppressWarnings annotation
You can suppress specific errors and warnings by use of the @SuppressWarnings annotation, for example

@SuppressWarnings ("interning") or @SuppressWarnings ("nullness"). Section [32.1.1] explains the syntax
of the argument string.

203

A @SuppressWarnings annotation may be placed on program declarations such as a local variable declaration,
a method, or a class. It suppresses all warnings within that program element. Section [32.1.7] discusses where the
annotation may be written in source code.

Section [32.1.3] gives best practices for writing @SuppressiWarnings annotations.

32.1.1 Q@SuppressWarnings syntax

The @SuppressWarnings annotation takes a string argument, in one of the following forms: "checkername:messagekey",
"checkername", or "messagekey".

The argument checkername is the checker name, without “Checker”. It is lower case by default, though a checker
can choose a different casing. For example, if you invoke a checker as javac -processor MyNiftyChecker ...,
then you would suppress its error messages with @SuppressWarnings ("mynifty"). (An exception is the Subtyping
Checker, for which you use the annotation name; see Section @}) Sometimes, a checker honors multiple checkername
arguments; use the ~AshowSuppressiWarningsStrings command-line option to see them.

The argument messagekey is the message key for the error. Each warning message from the compiler gives the most
specific suppression string that can be used to suppress that warning. An example is “dereference.of.nullable” in

MyFile.java:107: error: [dereference.of.nullable] dereference of possibly-null reference myList
myList.add(elt);

You are allowed to use any substring of a message key, so long as the substring extends at each end to a pe-
riod or an end of the key. For example, to suppress a warning with message key "assignment", you could use
@SuppressWarnings ("assignment"), @SuppressWarnings ("assignment.type"), @SuppressWarnings ("type.incompatible")
or other variants. We recommend using the longest possible message key; a short message might suppress more warnings
than you expect.

The checkername "allcheckers" means all checkers. Using this is not recommended, except for messages
common to all checkers such as purity-related messages when using -AcheckPurityAnnotations. If you use
"allcheckers™", yourun some checker that does not issue any warnings, and you suply the ~-AwarnUnneededSuppressions
command-line argument, then the Checker Framework will issue an unneeded. suppression warning.

The special messagekey “all” means to suppress all warnings.

If the checkername part is omitted, the @SuppressWarnings applies to all checkers. If the messagekey part is
omitted, the @SuppressWarnings applies to all messages (it suppresses all warnings from the given checker).

With the -ArequirePrefixInWarningSuppressions command-line option, the Checker Framework only sup-
presses warnings when the string is in the "checkername" or "checkername:messagekey" format, as in
@SuppressWarnings ("nullness") or @SuppressWarnings ("nullness:assignment™). For example, @SuppressWarnings ("assic
and @SuppressWarnings ("all") have no effect (they are ignored) when ~ArequirePrefixInWarningSuppressions
is used. You can use @SuppressWarnings ("allcheckers") to suppress all Checker Framework warnings.

32.1.2 Where @SuppressWarnings can be written

@SuppressWarnings is a declaration annotation, so it may be placed on program declarations such as a local
variable declaration, a method, or a class. It cannot be used on statements, expressions, or types. (assert plus
@AssumeAssertion can be used between statements and can affect arbitrary expressions; see Section[32.2])

Always write a @SuppressWWarnings annotation on the smallest possible scope. To reduce the scope of a
@SuppressWarnings annotation, it is sometimes desirable to refactor the code. You might extract an expression
into a local variable, so that warnings can be suppressed just for that local variable’s initializer expression. Likewise,
you might extract some code into a separate method, so that warnings can be suppressed just for its body. Or, you can
use @AssumeAssertion on an assert statement; see Section [32.2]

As an example, consider suppressing a warning at an assignment that you know is safe. Here is an example that
uses the Tainting Checker (Section[I0). Assume that expr has compile-time (declared) type @Tainted String, but
you know that the run-time value of expr is untainted.

@SuppressWarnings ("tainting:cast.unsafe") // expr is untainted because ... [explanation goes here]
@Untainted String myvar = expr;

204

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/SuppressWarnings.html

Java does not permit annotations (such as @SuppressWarnings) on assignments (or on other statements or expressions),
so it would have been illegal to write

@Untainted String myvar;

@SuppressWarnings ("tainting:cast.unsafe") // expr is untainted because ...
myvar = expr;

32.1.3 Good practices when suppressing warnings
Suppress warnings in the smallest possible scope

Prefer @SuppressWarnings on a local variable declaration to one on a method, and prefer one on a method to one on a
class. @SuppressWarnings on a local variable declaration applies only to the declaration (including its initializer if
any), not to all uses of the variable.

You may be able to suppress a warning about a use of an expression by writing @AssumeAssertion for the
expression, before the use. See Section [32.2]

Another way to reduce the scope of a @SuppressWarnings is to extract the expression into a new local variable
and place a @SuppressWarnings annotation on the variable declaration. See Section[32.1.2]

Use a specific argument to @SuppressWarnings

It is best to use the most specific possible message key to suppress just a specific error that you know to be a false
positive. The checker outputs this message key when it issues an error. If you use a broader @SuppressWarnings
annotation, then it may mask other errors that you needed to know about.

Any of the following would have suppressed the warning in Section [32.1.2}

@SuppressWarnings ("tainting") // suppresses all tainting-related warnings
@SuppressWarnings ("cast") // suppresses warnings from all checkers about casts
@SuppressWarnings ("unsafe") // suppresses warnings from all checkers about unsafe code
@SuppressWarnings ("cast.unsafe") // suppresses warnings from all checkers about unsafe casts
@SuppressWarnings ("tainting:cast") // suppresses tainting warnings about casts
@SuppressWarnings ("tainting:unsafe") // suppresses tainting warnings about unsafe code
@SuppressWarnings ("tainting:cast.unsafe") // suppresses tainting warnings about unsafe casts

The last one is the most specific, and therefore is the best style.

Justify why the warning is a false positive

A @SuppressWarnings annotation asserts that the programmer knows that the code is actually correct or safe (that is,
no undesired behavior will occur), even though the type system is unable to prove that the code is correct or safe.

Whenever you write a @SuppressWarnings annotation, you should also write, typically on the same line, a code
comment explaining why the code is actually correct. In some cases you might also justify why the code cannot be
rewritten in a simpler way that would be amenable to type-checking. Also make it clear what error is being suppressed.
(This is particularly important when the @SuppressWarnings is on a method declaration and the suppressed warning
might be anywhere in the method body.)

This documentation will help you and others to understand the reason for the @SuppressWarnings annotation. It
will also help you audit your code to verify all the warning suppressions. (The code is correct only if the checker issues
no warnings and each @SuppressWarnings is correct.)

A suppression message like “a.f is not null” is not useful. The fact that you are suppressing the warning means that
you believe that a. £ is not null. The message should explain why you believe that; for example, “a.f was checked above
and no subsequent side effect can affect it”.

Here are some terse examples from libraries in plume-lib:

205

https://github.com/plume-lib/

@SuppressWarnings ("cast") // cast is redundant (except when checking nullness)
@SuppressWarnings ("interning") // FbType.FREE is interned but is not annotated
@SuppressWarnings ("interning") // equality testing optimization

@SuppressWarnings ("nullness") // used portion of array is non-null

@SuppressWarnings ("nullness") // oi.factory is a static method, so null first argument is OK
@SuppressWarnings ("purity") // side effect to local state of type BitSet

A particularly good (and concise) justification is to reference an issue in the issue tracker, as in these two from
Daikon:

@SuppressWarnings ("flowexpr.parse.error") // https://tinyurl.com/cfissue/862
@SuppressWarnings ("keyfor") // https://tinyurl.com/cfissue/877

Please report false positive warnings, then reference them in your warning suppressions. This permits the Checker
Framework maintainers to know about the problem, it helps them with prioritization (by knowing how often in
your codebase a particular issue arises), and it enables you to know when an issue has been fixed (though the
-AwarnUnneededSuppressions command-line option also serves the latter purpose).

32.2 (@AssumeAssertion string in an assert message

Sometimes, it is too disruptive to refactor your code to create a location where @SuppressWarnings can
be written. You can instead suppress a warning by writing an assertion whose message contains the string
@AssumeAssertion(checkername).

For example, in this code:

while (c != Object.class) {

c = c.getSuperclass();
assert ¢ != null
"@AssumeAssertion(nullness): c was not Object, so its superclass is not null";

}

the Nullness Checker assumes that c is non-null from the assert statement forward (including on the next iteration
through the loop).

The assert expression must be an expression that would affect flow-sensitive type refinement (Section[31.7), if the
expression appeared in a conditional test. Each type system has its own rules about what type refinement it performs.

The value in parentheses is a checker name (typically lowercase), exactly as in the @SuppressWarnings annotation
(Section[32Z.1.T). Any subcheckers will also assume that the assertion is true (e.g., the Map Key Checker will assume
that the assertion in the example above cannot fail, when it runs as a subchecker of the Nullness Checker).

The same good practices apply as for @SuppressWarnings annotations, such as writing a comment justifying why
the assumption is safe (Section[32.1.3).

The -RAassumeAssertionsAreEnabled and -AassumeAssertionsAreDisabled command-line options (Sec-
tion do not affect processing of assert statements that have @AssumeAssertion in their message. Writing
@AssumeAssertion means that the assertion would succeed if it were executed, and the Checker Framework makes
use of that information regardless of the -AassumeAssertionsAreEnabled and -AassumeAssertionsAreDisabled
command-line options.

32.2.1 Suppressing warnings and defensive programming

This section explains the distinction between two different uses for assertions: debugging a program (also known as
defensive programming) versus specifying a program. The examples use nullness annotations, but the concepts apply to
any checker.

206

https://plse.cs.washington.edu/daikon/

The purpose of assertions is to aid debugging by throwing an exception when a program does not work correctly.
Sometimes, programmers use assertions for a different purpose: documenting how the program works. By default, the
Checker Framework assumes that each assertion is used for its primary purpose of debugging: the assertion might fail
at run time, and the programmer wishes to be informed at compile time about such possible run-time errors.

Suppose that a programmer encounters a failing test, adds an assertion to aid debugging, and fixes the test. The
programmer leaves the assertion in the program if the programmer is worried that the program might fail in a similar
way in the future. The Checker Framework should not assume that the assertion succeeds — doing so would defeat the
very purpose of the Checker Framework, which is to detect errors at compile time and prevent them from occurring at
run time.

A non-standard use for annotations is to document facts that a programmer has independently verified to be true.
The Checker Framework can leverage these assertions in order to avoid issuing false positive warnings. The programmer
marks such assertions with the @AssumeAssertion string in the assert message (see Section[32.2] Only do so if you
are sure that the assertion always succeeds at run time.

Methods such as Objects.requireNonNull, JUnit’s Assert.assertNotNull, and Guava’s verifyNotNull and
checkNotNull are similar to assertions. Just as for assertions, their intended use is as debugging aids, they might fail
at run time, and the Checker Framework warns if that might happen. Some programmers may use assert methods as
documentation of facts that the programmer has verified in some other manner. If you know that a particular codebase
always uses an assertion method not for defensive programming but to indicate facts that are guaranteed to be true
(that is, these assertions cannot fail at run time), then there are two approaches to avoid false positive warnings: write
specifications or suppress warnings; see below for an explanation of each approach.

The method NullnessUtil.castNonNull|is not an assertion method. It is a warning suppression method.

Note that some libraries have an imprecise specification of their assertion methods. For example, Guava’s
Verify.verifyNotNull is imprecisely specified to have a @Nullable formal parameter. In a correct execution,
null never flows there, so its type can and should be annotated as @NonNull. That annotation allows the Nullness
Checker to warn about programs that crash due to passing null to verifyNotNull. You can use a version of Guava
with a small change to your build file. Where the build file refers to Maven Central’s guava artifact, change the group
name from “com.google.guava” to “org.checkerframework.annotatedlib”. (The code is identical; the only difference is
annotations.)

Option 1: Write specifications based on uses of assertion methods Suppose you are annotating a codebase that
already contains precondition checks, such as:

public String myGet (String key, String def) {
checkNotNull (key, "key"); // NOI18N

}

Because key is non-null in every correct execution, its type should be @NonNull in myGet’s signature. (@NonNull is
the default, so in this case there is nothing to write.) The checker will not issue a warning about the checkNotNull call,
but will issue a warning at incorrect calls to myGet.

Option 2: Suppress warnings at uses of assertion methods This section explains how to suppress warnings at all
uses of an assertion method. As with any warning suppression, you will compromise the checker’s guarantee that your
code is correct and will not fail at run time.

o If the method is defined in your source code, annotate its definition just as NullnessUtil.castNonNull]is
annotated; see its Javadoc or the source code for the Checker Framework. Also, be sure to document the intention
in the method’s Javadoc, so that programmers do not accidentally misuse it for defensive programming.

o If the method is defined in an external library, write a stub file that changes the method’s annotations, or use
-AskipUses to make the Checker Framework ignore all calls to an entire class.

207

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Objects.html#requireNonNull(T)
../api/org/checkerframework/checker/nullness/util/NullnessUtil.html#castNonNull-T-
../api/org/checkerframework/checker/nullness/util/NullnessUtil.html#castNonNull-T-

32.3 -AsuppressWarnings command-line option

Supplying the -AsuppressWarnings command-line option is equivalent to writing a @SuppressWarnings annotation
on every class that the compiler type-checks. The argument to ~AsuppressWarnings is a comma-separated list of
warning suppression strings, as in ~AsuppressWarnings=purity,uninitialized.

When possible, it is better to write a @SuppressWarnings annotation with a smaller scope, rather than using the
-AsuppressWarnings command-line option.

324 -AskipUses and —AonlyUses command-line options

You can suppress all errors and warnings at all uses of a given class, or suppress all errors and warnings except those
at uses of a given class. (The class itself is still type-checked, unless you also use the -AskipDefs or ~AonlyDefs
command-line option, see[32.5). You can also use these options to affect entire packages or directories/folders.

Set the ~AskipUses command-line option to a regular expression that matches fully-qualified class names (not file
names) for which warnings and errors should be suppressed. Or, set the ~AonlyUses command-line option to a regular
expression that matches fully-qualified class names (not file names) for which warnings and errors should be emitted;
warnings about uses of all other classes will be suppressed.

For example, suppose that you use “~AskipUses="java\.” on the command line (with appropriate quoting) when
invoking javac. Then the checkers will suppress all warnings related to classes whose fully-qualified name starts with
java., such as all warnings relating to invalid arguments and all warnings relating to incorrect use of the return value.

To suppress all errors and warnings related to multiple classes, you can use the regular expression alternative
operator “|”, asin “~AskipUses="java\.lang\. | java\.util\."” to suppress all warnings related to uses of classes
that belong to the java.lang or java.util packages. (Depending on your shell or other tool, you might need to
change or remove the quoting.)

You can supply both -AskipUses and -AonlyUses, in which case the -AskipUses argument takes precedence,
and -AonlyUses does further filtering but does not add anything that -AskipUses removed.

Warning: Use the -AonlyUses command-line option with care, because it can have unexpected results. For example,
if the given regular expression does not match classes in the JDK, then the Checker Framework will suppress every
warning that involves a JDK class such as Object or String. The meaning of -AonlyUses may be refined in the
future. Oftentimes -AskipUses is more useful.

32.5 -AskipDefs and —AonlyDefs command-line options

You can suppress all errors and warnings in the definition of a given class, or suppress all errors and warnings
except those in the definition of a given class. (Uses of the class are still type-checked, unless you also use the
-AskipUses or -~AonlyUses command-line option, see[32.4]) You can also use these options to affect entire packages
or directories/folders.

Set the ~AskipDefs command-line option to a regular expression that matches fully-qualified class names (not file
names) in whose definition warnings and errors should be suppressed. Or, set the ~-AonlyDefs command-line option to
a regular expression that matches fully-qualified class names (not file names) whose definitions should be type-checked.
(This is somewhat similar to NullAway’s -XepOpt :NullAway:AnnotatedPackages command-line argument.)

For example, if you use “~AskipDefs="mypackage\.” on the command line (with appropriate quoting) when
invoking javac, then the definitions of classes whose fully-qualified name starts with mypackage . will not be checked.

If you supply both -AskipDefs and -AonlyDefs, then -~AskipDefs takes precedence.

Another way not to type-check a file is not to pass it on the compiler command-line: the Checker Framework
type-checks only files that are passed to the compiler on the command line, and does not type-check any file that is not
passed to the compiler. The -AskipDefs and -AonlyDefs command-line options are intended for situations in which
the build system is hard to understand or change. In such a situation, a programmer may find it easier to supply an extra
command-line argument, than to change the set of files that is compiled.

208

A common scenario for using the arguments is when you are starting out by type-checking only part of a legacy
codebase. After you have verified the most important parts, you can incrementally check more classes until you are
type-checking the whole thing.

32.6 -Alint command-line option

The -Alint option enables or disables optional checks, analogously to javac’s -X1int option. Each of the distributed
checkers supports at least the following lint options (and possibly more, see the checker’s documentation):

e cast:unsafe (default: on) warn about unsafe casts that are not checked at run time, as in ((@NonNull String)
myref). Such casts are generally not necessary because of type refinement (Section [31.7).

e cast:redundant (default: on) warn about redundant casts that are guaranteed to succeed at run time, as in
((@NonNull String) "m"). Such casts are not necessary, because the target expression of the cast already has
the given type qualifier.

e cast Enable or disable all cast-related warnings.

e all Enable or disable all lint warnings, including checker-specific ones if any. Examples include
redundantNullComparison for the Nullness Checker (see Section[2) and dotequals for the Interning Checker
(see Section[6.4)). This option does not enable/disable the checker’s standard checks, just its optional ones.

e none The inverse of all: disable or enable all lint warnings, including checker-specific ones if any.

To activate a lint option, write -Alint= followed by a comma-delimited list of check names. If the option is preceded
by a hyphen (-), the warning is disabled. For example, to disable all lint options except redundant casts, you can pass
-Alint=-all, cast:redundant on the command line.

Only the last -Alint option is used; all previous -Alint options are silently ignored. In particular, this means that
-Alint=all -Alint=cast:redundant is not equivalent to -Alint=-all, cast:redundant.

32.7 Change the specification of a method

To prevent a checker from issuing a warning at calls to a specific method, you can change the annotations on that
method by writing a stub file (see Section [34.5).

Stub files are usually used to provide correct specifications for unspecified code.

Stub files can also be used to provide incorrect specifications, for the purpose of suppressing warnings. For example,
suppose that you are running the Nullness Checker to prevent null pointer exceptions. Further suppose that for some
reason you do not care if method Objects.requireNonNull crashes with a NullPointerException. You can supply
a stub file containing:

package java.util;
class Objects {

@EnsuresNonNull ("#1")

public static <T> @NonNull T requireNonNull (@Nullable T obj);
}

32.8 Don’t run the processor
You can compile parts of your code without use of the —-processor switch to javac. No checking is done during such
compilations, so no warnings are issued related to pluggable type-checking.

You can direct your build system to avoid compiling certain parts of your code. For example, the -Dmaven.test.skip=true
command-line argument tells Maven not to compile (or run) the tests.

209

32.9 Checker-specific mechanisms
Finally, some checkers have special rules. For example, the Nullness checker (Chapter 3)) uses the special castNonNull

method to suppress warnings (Section[3.4.1). This manual also explains special mechanisms for suppressing warnings
issued by the Fenum Checker (Section[9.4) and the Units Checker (Section[19.5).

210

Chapter 33

Type inference

This chapter is about tools that infer annotations for your program’s method signatures and fields, before you run a
type-checker. To learn about local type inference within a method body, see Section [31.7]

A typical workflow (Section[2.4)) is for a programmer to first write annotations on method signatures and fields,
then run a type-checker. Type inference performs the first step automatically for you. This saves time for programmers
who would otherwise have to understand the code, then write annotations manually.

Type inference outputs type qualifiers that are consistent with your program’s source code. Your program still might
not type-check if your program contains a bug or contains tricky code that is beyond the capabilities of the type checker.

The qualifiers are output into an annotation file. They can be viewed and adjusted by the programmer, can be used
by tools such as the type-checker, and can be inserted into the source code or the class file.

Inserting the inferred annotations into the program source code creates documentation in the form of type qualifiers,
which can aid programmer understanding and may make type-checking warnings more comprehensible. Storing
annotations in side-files is more desirable if the program’s source code cannot be modified for some reason, if the
typechecking is "one-off" (typechecking will be done once and its results will be evaluated, but it will not be done
repeatedly), or if the set of annotations is extremely voluminous and would clutter the code.

Type inference is most effective when you run it on a program rather than on a library — unless you also run it on
an extensive test suite for the library. See Section[33.6]for an explanation.

Type inference is costly: it takes several times longer than type-checking does. However, it only needs to be run
once, after which you can use and possibly modify the results.

33.1 Type inference tools

This section lists tools that take a program and output a set of annotations for it. It first lists tools that work only for a
single type system (but may do a more accurate job for that type system) then lists general tools that work for any type
system.

For the Nullness Checker: Section[3.3.7]lists several tools that infer annotations for the Nullness Checker.

For the Purity Checker: If you run the Checker Framework with the -AsuggestPureMethods command-line op-
tion, it will suggest methods that can be marked as @SideEffectFree, @Deterministic, or @Pure; see Sec-
tion

WPI, for any type system: “Whole program inference”, or WPI, is distributed with the Checker Framework. See
Section[33.2]

CFI, for any type system: “Checker Framework Inference”, or CFL, is a type inference framework built on a variant
of the Checker Framework. You need to slightly rewrite your type system to work with CFI. The CFI repository
(https://github.com/opprop/checker-framework-inference) contains rewritten versions of some of the
type systems that are distributed with the Checker Framework.

211

https://github.com/opprop/checker-framework-inference
https://github.com/opprop/checker-framework-inference

Cascade, for any type system: Cascade| [VPEJ15] is an Eclipse plugin that implements interactive type qualifier
inference. Cascade is interactive rather than fully-automated: it makes it easier for a developer to insert
annotations. Cascade starts with an unannotated program and runs a type-checker. For each warning it suggests
multiple fixes, the developer chooses a fix, and Cascade applies it. Cascade works with any checker built on
the Checker Framework. You can find installation instructions and a video tutorial at https://github.com/
reprogrammer/cascade. Cascade was last updated in November 2014, so it might or might not work for you.

Except for one of the nullness inference tools, all these type inference tools are static analyses. They analyze your
program’s source code, but they do not run your program.

33.2 Whole-program inference

Whole-program inference infers types for fields, method parameters, and method return types that do not have a
user-written qualifier (for the given type system). The inferred type qualifiers are output into annotation files. The
inferred type is the most specific type that is compatible with all the uses in the program. For example, the inferred type
for a field is the least upper bound of the types of all the expressions that are assigned into the field.

There are three scripts that you can use to run whole-program inference. Each has advantages and disadvantages,
discussed below:

e To run whole-program inference on a single project without modifying its source code, use the wpi . sh script
(Section[33.3)). This script can automatically understand many Ant, Maven, and Gradle build files, so it requires
little manual configuration.

e To run whole-program inference on many projects without modifying their source code (say, when running it on
projects from GitHub), use the wpi-many. sh script (Section[33.4). This script can understand the same build
files as wpi.sh.

o If you want to insert the inferred annotations directly into a single project’s source code, use the infer-and-annotate.sh

script (Section [33.5).

These type inference scripts appear in the checker/bin/ directory. The remainder of this chapter describes them
(Sections[33.3H33.3), then concludes with discussion that applies to all of them.

33.3 Running whole-program inference on a single project
A typical invocation of wpi.sh is
wpi.sh -- --checker nullness

The result is a set of log files placed in the d1jc-out/ folder of the target project. The results of type-checking
with each candidate set of annotations will be concatenated into the file d1jc-out/wpi.log; the final results (i.e.,
those obtained using the most precise, consistent set of annotations) will appear at the end of this file. The inferred
annotations appear in .ajava files in a temporary directory whose name appears in the d1cj-out/wpi.log file; you
can find their location by examining the -Ajava argument to the last javac command that was run. The annotation
files generated in each round of inference appear in directories labeled iteration0, iterationl, etc.

The wpi.sh script is most useful when analyzing projects that follow the standard conventions of their build
system for single-module projects. When analyzing a project that requires non-standard build system commands,
use the —c and -b options to override the defaults used by wpi.sh. For example, suppose that you wanted to use
wpi.sh to infer annotations for the Resource Leak Checker on|Apache Zookeeper’s zookeeper—-server module only.
Without wpi.sh, one might use the following command: mvn -B -projects zookeeper-server -also-make
install -DskipTests. To use this command via wpi.sh, use the following: sh wpi.sh -b "-B -projects
zookeeper-server -also-make" -c "install -DskipTests" - -checker resourceleak.

The full syntax for invoking wpi. sh is

212

https://github.com/reprogrammer/cascade/
https://github.com/reprogrammer/cascade
https://github.com/reprogrammer/cascade
https://github.com/apache/zookeeper

wpi.sh [-d PROJECIDIR] [-t TIMEOUT] [-c COMPILATION_TARGET] [-b EXTRA_BUILD_ARGS] [-g GRADLECACHEDIR] --
Arguments in square brackets are optional. Here is an explanation of the arguments:

-d PROJECTDIR The top-level directory of the project. It must contain an Ant, Gradle, or Maven buildfile. The
default is the current working directory.

-t TIMEOUT The timeout for running the checker, in seconds.

-c COMPILATION_TARGET The name(s) of the build system target(s) used to compile the target project. The
default is chosen based on the build system (e.g., compileJdava for Gradle, compile for Maven, etc.). This
argument is passed directly to the build system when compiling the target project, so it can also include
command-line arguments that only apply to the compilation targets (and not other targets like clean); for general
command-line arguments that apply to all targets, use the -b option instead. When running WPI on a single
module of a multi-module project, you might want to use this option (possibly in combination with -b, below),
depending on the setup of the target project. The argument may contain spaces and is re-tokenized by the shell.

-b EXTRA_BUILD_ARGS Extra arguments to pass to the build script invocation. This argument will be passed
to compilation tasks, such as ant compile, gradle compileJava, or mvn compile. The main difference
between this option and -c is that the values of the -b option are also passed to other, non-compilation build
system commands, such as ant clean, gradle clean, ormvn clean. The argument may contain spaces and
is re-tokenized by the shell.

-g GRADLECACHEDIR The directory to use for the —g option to Gradle (the Gradle home directory). This option is
ignored if the target project does not build with Gradle. The default is . gradle relative to the target project (i.e.,
each target project has its own Gradle home). This default is motivated by |Gradle issue #1319,

DLJC-ARGS Arguments that are passed directly to do-like-javac/s d1 jc program without modification. One argument
is required: —-checker, which indicates what type-checker(s) to run (in the format described in Section [2.2.4).
The documentation of do-like-javac (https://github.com/kelloggm/do-like-javac) describes the other
commands that its WPI tool supports. Notably, to pass checker-specific arguments to invocations of javac, use the
--extraJavacArgs argument to d1 jc. For example, to use the ~AignoreRangeOverflow option for the Constant
Value Checker (Chapter[22] page[I43) when running inference, you would add --extraJavacArgs='-AignoreRangeOverflow’
anywhere after the —- argument to wpi . sh.

You may need to wait a few minutes for the command to complete.

33.3.1 Requirements for whole-program inference scripts

The requirements to run wpi.sh and wpi-many.sh are the same:

e The project on which inference is run must contain an Ant, Gradle, or Maven buildfile that compiles the project.
At least one of the JAVA_HOME, JAVAS_HOME, JAVA11l HOME, JAVA17_ HOME, or JAVA18_ HOME environment vari-
ables must be set.
If set, the JAVA_HOME environment variable must point to a Java 8, 11, 17, or 18 JDK.
If set, the JAVA8_HOME environment variable must point to a Java 8 JDK.
If set, the JAVA11_HOME environment variable must point to a Java 11 JDK.
If set, the JAVA17_HOME environment variable must point to a Java 17 JDK.
If set, the JAVA18_HOME environment variable must point to a Java 18 JDK.
CHECKERFRAMEWORK environment variable must point to a built copy of the Checker Framework.
If set, the DLJC environment variable must point to a copy of the dljc script from do-like-javac (https:
//github.com/kelloggm/do-1like-javac). (If this variable is not set, the WPI scripts will download this
dependency automatically.)
e Other dependencies: ant, awk, curl, git, gradle, mvn, python3 (for dljc), wget.

Python2.7 modules: subprocess32.

213

https://github.com/gradle/gradle/issues/1319
https://github.com/kelloggm/do-like-javac
https://github.com/kelloggm/do-like-javac
https://github.com/kelloggm/do-like-javac
https://github.com/kelloggm/do-like-javac

33.4 Running whole-program inference on many projects

The requirements to run wpi.sh and wpi-many. sh are the same. See Section [33.3.T]for the list of requirements.
To run an experiment on many projects:

1. Use query-github. sh to search GitHub for candidate repositories. File docs/examples/wpi-many/securerandom.query
is an example query, and file docs/manual/securerandom. list is the standard output created by running
query-github.sh securerandom.query 100. If you do not want to use GitHub, construct a file yourself that
matches the format of the file securerandom.list.

2. Use wpi-many.sh to run whole-program inference on every Ant, Gradle, or Maven project in a list of (GitHub
repository URL, git hash) pairs.

e If you are using a checker that is distributed with the Checker Framework, use wpi-many. sh directly.

o If you are using a checker that is not distributed with the Checker Framework (also known as a "custom
checker"), file docs/examples/wpi-many/wpi-many-custom-checker-example. sh is a no-arguments
script that serves as an example of how to use wpi-many.sh.

Log files are copied into a results directory. For a failed run, the log file indicates the reason that WPI could not
be run to completion on the project. For a successful run, the log file indicates whether the project was verified
(i.e., no errors were reported), or whether the checker issued warnings (which might be true positive or false
positive warnings).

3. Use wpi-summary.sh to summarize the logs in the output results directory. Use its output to guide your analysis
of the results of running wpi-many.sh: you should manually examine the log files for the projects that appear in
the "results available" list it produces. This list is the list of every project that the script was able to successfully
run WPI on. (This does not mean that the project type-checks without errors afterward, or even typechecks at all
— just that the Checker Framework attempted to typecheck the project and some output was produced.)

4. (Optional) Add annotations that WPI does not infer, to eliminate false positive warnings. There are three ways
you can add annotations to a target program:

e Fork the project and add the annotations directly to the project’s source code, and add a dependency on
org.checkerframework:checker-qual to the project’s build system. This approach is the most difficult,
but has the advantage that the checker will attempt to verify any annotations you add.

e Add the annotations in an .ajava file. Create the .ajava file as a copy of the . java file, following the
instructions in Section [34.6| about directory structure, etc.

e Add the annotations in a stub file, creating the .astub file as a copy of the . java file. When you run the

checker, supply the -AmergeStubsWithSource and -Astubs=. .. command-line arguments. This option
is similar to option 2, but requires extra command-line options to the checker rather than a specific directory
structure.

A typical invocation is
wpi-many.sh -o outdir -i /path/to/repo.list -t 7200 -- --checker optional

The wpi-many. sh script takes the following command-line arguments. The -o and -1 arguments are mandatory.
An invocation should also include - [DLJC—-ARGS] at the end; DLJC-ARGS is documented in Section|33.3

-0 outdir run the experiment in the outdi r directory, and place the results in the outdir-results directory. Both
will be created if they do not exist. The directory may be specified as an absolute or relative path.

-i infile Read the list of repositories to use from the file infile. The file must be specified as an absolute, not relative,
path. Each line should have 2 elements, separated by whitespace:

1. The URL of the git repository on GitHub. The URL must be of the form https://github.com/username/repository
. The script is reliant on the number of slashes, so excluding “https://” is an error.
2. The commit hash to use.

-t timeout The timeout for running the checker on each project, in seconds.

214

-2 GRADLECACHEDIR The directory to use for the —g option to Gradle (the Gradle home directory). This option is
ignored if the target project does not build with Gradle. The default is . gradle relative to the target project (i.e.,
each target project has its own Gradle home). This default is motivated by |Gradle issue #1319.

-s If this flag is present, then projects which are not buildable — for which no supported build file is present or for which
running the standard build commands fail — are skipped on future runs but are not deleted immediately (such
projects are deleted immediately if this flag is not present). This flag is useful if you intend to run wpi-many.sh
several times on the same set of repositories (for example, during checker development), to avoid re-downloading
unusable projects.

33.5 Whole-program inference that inserts annotations into source code

To use this version of whole-program inference, make sure that insert-annotations-to-source, from the Annota-
tion File Utilities project, is on your path (for example, its directory is in the $PATH environment variable). Then, run
the script checker-framework/checker/bin/infer-and-annotate. sh. Its command-line arguments are:

Optional: Command-line arguments to insert-annotations-to-sourcel

Processor’s name.

Target program’s classpath. This argument is required; pass "" if it is empty.

Optional: Extra processor arguments which will be passed to the checker, if any. You may supply any number of
such arguments, or none. Each such argument must start with a hyphen.

Optional: Paths to . jaif files used as input in the inference process.

6. Paths to . java files in the program.

nn

b e

hd

For example, to add annotations to the plume-1ib project:

git clone https://github.com/mernst/plume-1lib.git

cd plume-1lib

make jar

SCHECKERFRAMEWORK/checker/bin/infer-and-annotate.sh \
"LockChecker,NullnessChecker" java/plume.jar:java/lib/junit-4.12.jar:$JAVA_HOME/lib/tools.jar \
‘find java/src/plume/ -name "*.java"®

View the results

git diff

You may need to wait a few minutes for the command to complete. You can ignore warnings that the command
outputs while it tries different annotations in your code.

It is recommended that you run infer-and-annotate. sh on a copy of your code, so that you can see what changes
it made and so that it does not change your only copy. One way to do this is to work in a clone of your repository that
has no uncommitted changes.

33.6 Inference results depend on uses in your program or test suite

Type inference outputs the most specific type qualifiers that are consistent with all the source code it is given. (Sec-
tion [33.6.1] explains when type inference ignores some code.) This may be different than the specification the
programmer had in mind when writing tho code. If the program uses a method or field in a limited way, then the
inferred annotations will be legal for the program as currently written but may not be as general as possible and may not
accommodate future program changes.

Here are some examples:

e Suppose that your program (or test suite) currently calls method m1 only with non-null arguments. The tool
will infer that m1’s parameter has @NonNull type. If you had intended the method to be able to take null as an
argument and you later add such a call, the type-checker will issue a warning because the inferred @NonNull
annotation is inconsistent with the new call.

215

https://github.com/gradle/gradle/issues/1319
https://checkerframework.org/annotation-file-utilities/#insert-annotations-to-source

e If your program (or test suite) passes only null as an argument, the inferred type will be the bottom type, such as
@GuardedByBottom.

e Suppose that method m2 has no body, because it is defined in an interface or abstract class. Type inference can
still infer types for its signature, based on the overriding implementations. If all the methods that override m2
return a non-null value, type inference will infer that m2’s return type has @NonNull type, even if some other
overriding method is allowed to return null.

If the program contains erroneous calls, the inferred annotations may reflect those errors. Suppose you intend
method m3 to be called with non-null arguments, but your program contains an error and one of the calls to m3 passes
null as the argument. Then the tool will infer that m3’s parameter has @Nullable type.

If you run whole-program inference on a library that contains mutually recursive routines, and there are no non-
recursive calls to the routines, then whole-program inference may run a long time and eventually produce incorrect
results. In this case, write type annotations on the formal parameters of one of the routines.

Whole-program inference is a “forward analysis”. It determines a method parameter’s type annotation based on
what arguments are passed to the method but not on how the parameter is used within the method body. It determines a
method’s return type based on code in the method body but not on uses of the method return value in client code.

33.6.1 Whole-program inference ignores some code

Whole-program inference ignores code within the scope of a @SuppressWarnings annotation with an appropriate key
(Section[32.)). In particular, uses within the scope do not contribute to the inferred type, and declarations within the
scope are not changed. You should remove @SuppressWarnings annotations from the class declaration of any class
you wish to infer types for.

As noted above, whole-program inference generalizes from invocations of methods and assignments to fields. If a
field is set via reflection (such as via injection), there are no explicit assignments to it for type inference to generalize
from, and type inference will produce an inaccurate result. There are two ways to make whole-program inference ignore
such a field. (1) You probably have an annotation such as/@Inject|or|@Option that indicates such fields. Meta-annotate
the declaration of the Inject or Option annotation with|@IgnoreInWholeProgramInference, (2) Annotate the field
to be ignored with @IgnoreInWholeProgramInference.

Whole-program inference, for a type-checker other than the Nullness Checker, ignores assignments and pseudo-
assignments where the right-hand-side is the null literal.

33.6.2 Manually checking whole-program inference results

With any type inference tool, it is a good idea to manually examine the results. This can help you find bugs in your code
or places where type inference inferred an overly-precise result. You can correct the inferred results manually, or you
can add tests that pass additional values and then re-run inference.

When arguments or assignments are literals, whole-program inference commonly infers overly precise type
annotations, such as @Interned and @Regex annotations when the analyzed code only uses a constant string.

When an annotation is inferred for a use of a type variable, you may wish to move the annotation to the corresponding
upper bounds of the type variable declaration.

33.7 How whole-program inference works

This section explains how the wpi.sh and infer-and-annotate.sh scripts work. If you merely want to run the
scripts and you are not encountering trouble, you can skip this section.

Each script repeatedly runs the checker with an -Ainfer= command-line option to infer types for fields and
method signatures. The output of this step is a . jaif (for infer-and-annotate.sh) or .ajava (for wpi. sh) file that
records the inferred types. Each script adds the inferred annotation to the next run, so that the checker takes them into
account (and checks them). wpi. sh does this by updating the set of .ajava files that are passed to the checker via the

216

https://docs.oracle.com/javaee/7/api/javax/inject/Inject.html
https://types.cs.washington.edu/plume-lib/api/plume/Option.html
../api/org/checkerframework/framework/qual/IgnoreInWholeProgramInference.html
../api/org/checkerframework/framework/qual/IgnoreInWholeProgramInference.html

-Aajava command-line argument; infer-and-annotate. sh inserts the inferred annotations in the program using the
Annotation File Utilities (https://checkerframework.org/annotation-file-utilities/).

On each iteration through the process, there may be new annotations in the . jaif or .ajava files, and some
type-checking errors may be eliminated (though others might be introduced). The process halts when there are no more
changes to the inference results, that is, the . jaif or .ajava files are unchanged between two runs.

When the type-checker is run on the program with the final annotations inserted, there might still be errors. This
may be because the tool did not infer enough annotations, or because your program cannot typecheck (either because
contains a defect, or because it contains subtle code that is beyond the capabilities of the type system). However, each
of the inferred annotations is sound, and this reduces your manual effort in annotating the program.

The iterative process is required because type-checking is modular: it processes each class and each method
only once, independently. Modularity enables you to run type-checking on only part of your program, and it makes
type-checking fast. However, it has some disadvantages:

e The first run of the type-checker cannot take advantage of whole-program inference results because whole-
program inference is only complete at the end of type-checking, and modular type-checking does not revisit any
already-processed classes.

e Revisiting an already-processed class may result in a better estimate.

33.8 Type inference compared to whole-program analyses

There exist monolithic whole-program analyses that run without requiring any annotations in the source code. An
advantage of such a tool is that the programmer never needs to write any type annotations.
Running a whole-program inference tool, then running a type-checker, has some benefits:

e The type qualifiers act as machine-checked documentation, which can aid programmer understanding.

e Error messages may be more comprehensible. With a monolithic whole-program analysis, error messages can be
obscure, because the analysis has already inferred (possibly incorrect) types for a number of variables.

e Errors are localized. A change to one part of the program does not lead to an error message in a far-removed part
of the program.

e Type-checking is modular, which can be faster than re-doing a whole-program analysis every time the program
changes.

217

https://checkerframework.org/annotation-file-utilities/

Chapter 34

Annotating libraries

When your code uses a library that is not currently being compiled, the Checker Framework looks up the library’s
annotations in its class files. Section tells you how to find and use a version of a library that contains type
annotations.

If your code uses a library that does not contain type annotations, then the type-checker has no way to know the
library’s behavior. The type-checker makes conservative assumptions about unannotated bytecode. (See Section [31.5.6]
for details, an example, and how to override this conservative behavior.) These conservative library annotations
invariably lead to checker warnings.

This chapter describes how to eliminate the warnings by adding annotations to the library. (Alternately, the
-AskipUses or -RonlyUses command-line option can suppress all warnings related to an unannotated library, or to

part of your codebase; see Sections[32.4H32.3])
You can write annotations for a library, and make them known to a checker, in two ways.

1. Write annotations in a copy of the library’s source code (for instance, in a fork of the library’s GitHub project).
In addition to writing annotations, adjust the build system to run pluggable-type-checking when compiling (see
Chapter 37} page[253)). Now, when you compile the library, the resulting . jar file contains type annotations.
When checking a client of the library, put the annotated library’s . jar file on the classpath, as explained in
Section
With this compilation approach, the syntax of the library annotations is validated ahead of time. Thus, this
compilation approach is less error-prone, and the type-checker runs faster. You get correctness guarantees about
the library in addition to your code.
For instructions, see Section[34.2]

2. Write annotations in a “stub file”, if you do not have access to the source code.
Then, when check a client of the library, supply the “stub file” textually to the Checker Framework.
This approach does not require you to compile the library source code. A stub file is applicable to multiple
versions of a library, so the stub file does not need to be updated when a new version of the library is released,
unless the API has changed (such as defining a new class or method).
For instructions, see Section [34.

If you annotate a new library (either in its source code or in a stub file), please inform the Checker Framework
developers so that your annotated library can be advertised to users of the Checker Framework. Sharing your annotations
is useful even if the library is only partially annotated. However, as noted in Sections and [34.1.4] you should
annotate an entire class at a time. You may find type inference tools (Chapter 33] page 211)) helpful when getting started,
but you should always examine their results.

218

34.1 Tips for annotating a library

Section [2.4] gives general tips for writing annotations. This section gives tips that are specific to annotating a third-party
library.

34.1.1 Don’t change the code

If you annotate a library that you maintain, you can refactor it to improve its design.

When you annotate a library that you do not maintain, you should only add annotations and, when necessary,
documentation of those annotations. You can place the documentation in a Java comment (// or /*...*/) or in a
@CFComment/annotation.

Do not change the library’s code, which will change its behavior and make the annotated version inconsistent with
the unannotated version. (Sometimes it is acceptable to make a refactoring, such as extracting an expression into a
new local variable in order to annotate its type or suppress a warning. Perform refactoring only when you cannot use
@AssumeAssertion.)

Do not change publicly-visible documentation, such as Javadoc comments. That also makes the annotated version
inconsistent with the unannotated version.

Do not change formatting and whitespace.

Any of these changes would increase the difference between upstream (the original version) and your annotated
version. Unnecessary differences make it harder for others to understand what you have done, and they make it harder
to pull changes from upstream into the annotated library.

34.1.2 Library annotations should reflect the specification, not the implementation

Publicly-visible annotations (including those on public method formal parameters and return types) should be based on
the documentation, typically the method’s Javadoc. In other words, your annotations should re-state facts that are in the
Javadoc documentation.

Do not add requirements or guarantees beyond what the library author has already committed to. If a project’s
Javadoc says nothing about nullness, then you should not assume that the specification forbids or permits null. (If the
project’s Javadoc explicitly mentions null everywhere it is permitted, then you can assume it is forbidden elsewhere,
where the author omitted those statements.)

If a fact is not mentioned in the documentation, then it is usually an implementation detail. Clients should not
depend on implementation details, which are prone to change without notice. (In some cases, you can infer some facts
from the implementation, such as that null is permitted for a method’s parameter or return type if the implementation
explicitly passes null to the method or the method implementation returns null.)

If there is a fact that you think should be in the library’s documentation but was unintentionally omitted by its
authors, then please submit a bug report asking them to update the documentation to reflect this fact. After they do, you
can also express the fact as an annotation.

34.1.3 Report bugs upstream

While annotating the library, you may discover bugs or missing/wrong documentation. If you have a documentation
improvement or a bug fix, then open a pull request against the upstream version of the library. This will benefit all users
of the library. And, once the documentation is updated, you will be able to add annotations that are consistent with the
documentation.

34.1.4 Fully annotate the library, or indicate which parts you did not

If you do not annotate all the files in the library, then use|@AnnotatedFor to indicate what files you have annotated.
Whenever you annotate any part of a file, fully annotate the file! That is, write annotations for all the methods and
fields, based on their documentation. Here are reasons for this rule:

219

../api/org/checkerframework/framework/qual/CFComment.html
../api/org/checkerframework/framework/qual/AnnotatedFor.html

o If you annotate just part of the file, then users may be surprised that calls to some methods type-check as expected
whereas other methods do not (because they have not been annotated).

e Annotating one method or field at a time may lead to inconsistencies between different parts of the file. Different
people may make different assumptions, might write annotations in a way that is locally convenient but globally
inconsistent, or might not read all the documentation of the class to understand how it works.

e It is not much more effort to annotate an entire class versus one method or field. In either case it is usually
necessary to understand the entire class’s design and implementation. Once you have done that, you might as
well annotate the whole thing.

e If you fully annotate the file, it is possible to type-check the library to verify the annotations. (Even if you do not
do this right now, it eases the task in the future.)

34.1.5 Verify your annotations

Ideally, after you annotate a file, you should type-check the file to verify the correctness and completeness of your
annotations.

An alternative is to only annotate method signatures. The alternative is quicker but more error-prone. There is no
difference from the point of view of clients, who can only see annotations on public methods and fields. When you
compile the library, the type-checker will probably issue warnings; you can supply -Awarns so that the compiler will
still produce .class files.

34.2 Creating an annotated library
This section describes how to create an annotated library.

1. See the|org.checkerframework.annotatedlib group in the Maven Central Repository|to find out whether an
annotated version of the library already exists.

e If it exists, but you want to add annotations for a different checker:
Clone its repository from https://github.com/typetools/, and tweak its buildfile to run an additional
checker.
e If it does not already exist:
Fork the project. (First, verify that its license permits forking.)
Add a line in its main README to indicate that this is an annotated version of the library. That line should
also indicate how to obtain the corresponding upstream version (typically a git tag |corresponding to a
release)), so that others can see exactly what edits you have made.
Adjust the library’s build process, such as an Ant, Gradle, or Maven buildfile (for guidance, see Chapter 37
page[253)). Every time the build system runs the compiler, it should:
— pass the -AuseConservativeDefaultsForUncheckedCode=source, bytecode command-line op-
tion and
— run every pluggable type-checker for which any annotations exist, using -processor TypeSysteml, TypeSystem2,
You are not adding new build targets, but modifying existing targets. The reason to run every type-checker
is to verify the annotations you wrote, and to use appropriate defaults for all unannotated type uses.

2. Annotate some files.
When you annotate a file, annotate the whole thing, not just a few of its methods. Add an/@AnnotatedFor ({"checkername"})
annotation to each class declaration, or augment an existing @AnnotatedFor annotation.
3. Build the library.
Because of the changes that you made in step 1, this will run pluggable type-checkers. If there are any compiler
warnings, fix them and re-compile.
Now you have a . jar file that you can use while type-checking and at run time.
4. Tell other people about your work so that they can benefit from it.

220

https://search.maven.org/search?q=org.checkerframework.annotatedlib
https://github.com/typetools/
https://checkerframework.org/manual/developer-manual.html#annotated-library-version-numbers
https://checkerframework.org/manual/developer-manual.html#annotated-library-version-numbers
../api/org/checkerframework/framework/qual/AnnotatedFor.html

e Please inform the Checker Framework developers about your new annotated library by opening a pull request
or an issue. This will let us add your annotations to a repository in https://github.com/typetools/
and upload a compiled artifact to the Maven Central Repository.

e Optionally, encourage the library’s maintainers to accept your annotations into its main version control

repository. This suggestion will be most compelling if you have already reported bugs in the library that
were revealed by pluggable type-checking. Once the annotations are in the main version control repository,
they will be easier to maintain, the library will obtain the correctness guarantees of pluggable type-checking,
and there will be no need to distribute an annotated version of the library.
If the library maintainers do not accept the annotations, then periodically, such as when a new version of the
library is released, pull changes from upstream (the library’s main version control system) into your fork,
add annotations to any newly-added methods in classes that are annotated with @AnnotatedFor, rebuild to
create an updated . jar file, and inform the Checker Framework developers by opening an issue or issuing a
pull request.

34.3 Creating an annotated JDK

When you create a new checker, you need to also supply annotations for parts of the JDK. You can do so either as
stub files or in a copy of the JDK source code, as described in Section[35.10] Section tells how to improve JDK
annotations for an existing type system.

34.4 Compiling partially-annotated libraries

If you completely annotate a library, then you can compile it using a pluggable type-checker. You get a guarantee that
the library contains no errors (that is, it is consistent with the specifications you wrote).

The rest of this section tells you how to compile a library if you partially annotate it: that is, you write annotations
for some of its classes but not others. (There is another type of partial annotation, which is when you annotate method
signatures but do not type-check the bodies. See Section [34.1])

Here are two concerns you may have when partially annotating a library:

e Ignoring type-checking errors in unannotated parts of the library. Use the ~AskipDefs or ~AonlyDefs command-
line arguments; see Section[32.3]

e Putting conservative annotations in unannotated parts of the library. The checker needs to use normal defaulting
rules (Section [31.5.3)) for code you have annotated and conservative defaulting rules (Section [31.5.6)) for code
you have not yet annotated. This section describes how to do this. You use @AnnotatedFor to indicate which
classes you have annotated.

34.4.1 The -AuseConservativeDefaultsForUncheckedCode=source, bytecode
command-line argument

When compiling a library that is not fully annotated, use command-line argument
-AuseConservativeDefaultsForUncheckedCode=source, bytecode. This causes the checker to behave
normally for classes with a relevant @AnnotatedFor annotation. For classes without @AnnotatedFor, the checker uses
conservative defaults (see Section[31.5.6) for any type use with no explicit user-written annotation, and the checker
issues no warnings.

The @AnnotatedFor|annotation, written on a class, indicates that the class has been annotated for certain type
systems. For example, @AnnotatedFor ({"nullness", "regex"}) means that the programmer has written an-
notations for the Nullness and Regular Expression type systems. If one of those two type-checkers is run, the
-AuseConservativeDefaultsForUncheckedCode=source, bytecode command-line argument has no effect and
this class is treated normally: unannotated types are defaulted using normal source-code defaults and type-checking
warnings are issued. @AnnotatedFor’s arguments are any string that may be passed to the ~processor command-line

221

https://github.com/typetools/
../api/org/checkerframework/framework/qual/AnnotatedFor.html
../api/org/checkerframework/framework/qual/AnnotatedFor.html

argument: the fully-qualified class name for the checker, or a shorthand for built-in checkers (see Section[2.2.4). The
argument to @AnnotatedFor|is not an annotation name, but a checker name. Writing @AnnotatedFor on a class
doesn’t necessarily mean that you wrote any annotations, but that you examined the source code and verified that all
appropriate annotations are present.
Whenever you compile a class using the Checker Framework, including when using the
-AuseConservativeDefaultsForUncheckedCode=source, bytecode command-line argument, the resulting
.class files are fully-annotated; each type use in the .class file has an explicit type qualifier for any checker that is
run.

34.5 Using stub classes

You use a “stub file” to write annotations for a library, when you cannot edit and recompile the library. A checker uses
the annotated signatures at compile time, instead of or in addition to annotations that appear in the library’s .class
files.

A stub file cannot override the types of a package-private class, method, or field.

A stub class is Java source code that is allowed to omit certain parts, such as method bodies. Section[34.5.4]describes
the stub file format.

Section [34.3] explains how you should choose between creating stub classes or creating an annotated library.
Section 34.5.3] describes how to create stub classes. Section[34.5.1] describes how to use stub classes. These sections
illustrate stub classes via the example of creating a|@Interned-annotated version of java.lang.String. You don’t
need to repeat these steps to handle java.lang.String for the Interning Checker, but you might do something similar
for a different class and/or checker.

There are two types of annotation files, which are files containing annotations that can be read by the Checker
Framework. This section describes stub files, which are used by programmers and type system designers. Section 34.6|
dscribes ajava files, which are used mainly by tools, such as type inference.

34.5.1 Using a stub file

The -Astubs argument causes the Checker Framework to read annotations from annotated stub classes in preference to
the unannotated original library classes. For example:
javac -processor org.checkerframework.checker.interning.InterningChecker \

-Astubs=path/to/String.astub:stubs MyFile.java MyOtherFile.Jjava ...

Each stub path entry is a stub file (ending with .astub), directory, or . jar file; specifying a directory or . jar
file is equivalent to specifying every file in it whose name ends with .astub. The stub path entries are delimited by
File.pathSeparator (‘:’ for Linux and Mac, ;’ for Windows).

A checker automatically reads some of its own stub files, even without a -Astubs command-line argument; see
Section[35.10}

User-supplied stub files override a checker’s built-in stub files and the annotated JDK.

34.5.2 Multiple specifications for a method

There are three possible sources of information for a given element: source files, stub files, and bytecode files. Usually
source files take precedence over the other two, and stub files take precedence over bytecode. In other words:

e Iffile A. java is being compiled, then by default any stub for class A is ignored. See below for how to change this
behavior and respect both types of annotations.

e An un-annotated type variable in a stub file is used instead of annotations on a type variable in bytecode.
Use the -AstubWarnIfRedundantWithBytecode command-line option to get a warning whenever a stub file
specification is redundant with bytecode annotations.

e If a stub file does not mention a method or field (and no source is available), its annotations are taken from
bytecode.

222

../api/org/checkerframework/framework/qual/AnnotatedFor.html
../api/org/checkerframework/checker/interning/qual/Interned.html

If a method appears in more than one stub file (or twice in the same stub file), then, for each type hierarchy, the last
annotation read is used.

The annotated JDK is read as a stub file. You can override JDK annotations by providing your own stub file. If
your stub file contains a JDK method m, then no type annotations from the JDK’s m are used. If the JDK’s m contains a
declaration annotation @D, it is used unless your stub file contains a different @D annotation for m.

The command-line option -AmergeStubsWithSource tells the checker to use both source files and stub files. The
checker permits only values that are permitted by both the source and stub annotations. (This is called the greatest lower
bound, or GLB, of the types.)

As an example of GLB, suppose the source annotation says the value is in the range [1..20] and the stub file says the
value is in the range [11..30]. Since both sources of information are trusted, the value must be in the range [11..20].
Equivalently, the GLB of |@IntRange (from=1, to=20) and/@IntRange (from=11, to=30) is|@IntRange|(from=11,
to=20). As another example, the GLB of |@KeyFor ({"mapl", "map2"}) and |@KeyFor|({"map2", "map3"}) is
@KeyFor ({"mapl", "map2", "map3"}) since the value is known to be a key for all three maps.

34.5.3 Stub methods in subclasses of the declaring class

Sometimes, a method’s return type is different in a subclass than in a superclass, even though the subclass inherits (does
not define) the method. An example, SecureRandom.nextInt (), is shown below.

To express that method m has a different type in subclass Sub than where m is defined, write a “fake override”: write
the method in class Sub in a stub file. The Checker Framework will use that type for m at calls where the receiver’s
declared type is Sub or lower.

In a fake override of m, the formal parameter Java types of the method must be identical to those where m is defined,
but you can change its annotations. (The return type and the receiver type can be different.) If a fake override has no
annotations on a given type use, that type use is defaulted according to the usual defaulting rules.

This feature currently only works for return types. That is, a fake override changes the return type at certain calls,
but formal parameter type annotations on fake overrides have no effect. Type annotations on fake overrides of fields
also have no effect. Fake overrides will be able to change formal parameter and field type annotations in a future release
of the Checker Framework.

Example As an example, consider a type system that tracks whether a value is cryptographically secure. @Secure
is a subtype of @Insecure. Although SecureRandom does not override Random. next Int (it overrides the source of
randomness instead), you are allowed to write the following stub file:

package java.util;
class Random {
@Insecure int nextInt();

package java.security;
class SecureRandom extends Random {
@Secure int nextInt();

Client code behaves as follows:

Random r = ...;
SecureRandom sr = ...;

@Secure int il = r.nextInt(); // error
@Secure int i2 = sr.nextInt(); // OK

223

../api/org/checkerframework/common/value/qual/IntRange.html
../api/org/checkerframework/common/value/qual/IntRange.html
../api/org/checkerframework/common/value/qual/IntRange.html
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
../api/org/checkerframework/checker/nullness/qual/KeyFor.html

34.5.4 Stub file format

Every Java file is a valid stub file. However, you can omit information that is not relevant to pluggable type-checking;
this makes the stub file smaller and easier for people to read and write. Also note that the stub file’s extension must be
.astub, not . java.

As an illustration, a stub file for the Interning type system (Chapter[6) could be:

import org.checkerframework.checker.interning.qual.Interned;
package java.lang;
@Interned class Class<T> {}
class String {
@Interned String intern();

The stub file format is allowed to differ from Java source code in the following ways:

Method bodies: The stub class does not require method bodies for classes; any method body may be replaced by a
semicolon (;), as in an interface or abstract method declaration.

Method declarations: You only have to specify the methods that you need to annotate. Any method declaration may
be omitted, in which case the checker reads its annotations from library’s .class files. (If you are using a stub
class, then typically the library is unannotated.)

Declaration specifiers: Declaration specifiers (e.g., public, final, volatile) may be omitted.

Return types: The return type of a method does not need to match the real method. In particular, it is valid to use
java.lang.Object for every method. This simplifies the creation of stub files.

Import statements: Imports may appear at the beginning of the file or after any package declaration. The only
required import statements are the ones to import type annotations. Import statements for types are optional.

Multiple classes and packages: The stub file format permits having multiple classes and packages. The packages are
separated by a package statement: package my.package;. Each package declaration may occur only once; in
other words, all classes from a package must appear together.

34.5.5 Creating a stub file
If you have access to the Java source code

Every Java file is a stub file. If you have access to the Java file, copy file A. java to A.astub. You can add annotations
to the signatures, leaving the method bodies unchanged. The stub file parser silently ignores any annotations that it
cannot resolve to a type, so don’t forget the import statement.

Optionally (but highly recommended!), run the type-checker to verify that your annotations are correct. When you
run the type-checker on your annotations, there should not be any stub file that also contains annotations for the class. In
particular, if you are type-checking the JDK itself, then you should use the -Aignore jdkastub command-line option.

This approach retains the original documentation and source code, making it easier for a programmer to double-
check the annotations. It also enables creation of diffs, easing the process of upgrading when a library adds new
methods. And, the annotations are in a format that the library maintainers can even incorporate.

The downside of this approach is that the stub files are larger. This can slow down the Checker Framework, because
it parses the stub files each time it runs.

Alternatively, you can minimize source files to make them more suitable as stub files. Use the JavaStubifier to
convert, in-place, all . java files in given directories into minimal stub files.

mkdir project-stubs

cp -R project/src project-stubs

java —cp SCHECKERFRAMEWORK/checker/dist/checker. jar org.checkerframework.framework.stub.JavaStubifier pr
find project-stubs -type f -name "*.java" -exec rename ’'s/.java$/.astub/’ {} \;

224

Supply it a list of directories to process. Replacement happens in-place, so make sure to process a copy of your
sources.

You can now provide project-stubs as a stub directory using -Astubs=project-stubs as an additional
command-line option.

If you wish to use a single stub file, rather than a stub directory, you can concatenate all the minimized . java files
into a single . astub file:

find project-stubs/ -name "*.java" -type f | xargs cat > project.astub

34.5.6 Distributing stub files

If you are writing stub files but are not writing a checker, you can place the stub files anywhere that is convenient.
However, please consider providing your stub files to the checker author, so that other users can also benefit from the
stub files you wrote.

Stub files distributed with a checker appear in the same directory as the checker implementation (the *Checker. java
file, see Section[35.2). For example, in the Checker Framework they appear in files such as

checker/src/main/java/org/checkerframework/checker/regex/apache-xerces.astub
checker/src/main/java/org/checkerframework/checker/signature/javaparser.astub

If you are distributing stub files with a checker implementation, you must configure your build system to copy the
stub files into the distributed jar for your checker. Here are instructions if you are using the Checker Framework Gradle
plugin:

o If the stub files appear in the same directory as the checker class, which is a subtype of BaseTypeChecker, use
the following build configuration:

sourceSets {
main {
resources {
srcDirs += [’src/main/java’]

}

e If the stub files appear under the src/main/resources/ directory in a sub-directory matching the package of
your checker class, the default Gradle build configuration is sufficient.

In either case, recall that a|@StubFiles annotation on the checker class lists stub files that are always used. For stub
files whose use is optional (for example, because the behavior is unsound, or unsound except in certain circumstances),
users must supply the -Astubs=. .. command-line option.

If a stub file contains annotations that are used by the framework rather than by any specific checker (such
as purity annotations), and you wish to distribute it with the Checker Framework, put the stub file in directory
checker/resources/. You can also do this if the stub file has annotations for multiple checkers. To use a stub file in
directory checker/resources/, users must supply the ~Astubs=checker. jar/stub-file-name.astub command-
line option.

34.5.7 Troubleshooting stub libraries
Type-checking does not yield the expected results

By default, the stub parser silently ignores annotations on unknown classes and methods. The stub parser also silently
ignores unknown annotations, so don’t forget to import any annotations. Some command-line options make the stub
parser issue more warnings:

—AstubWarnIfNotFound

225

../api/org/checkerframework/framework/qual/StubFiles.html

—AstubNoWarnIfNotFound The Checker Framework can issue a “Type not found” warning when a stub file
contains a nonexistent element, for example when the stub file mentions a method that the class does not contain.
By default, the Checker Framework warns about such problems in a stub file provided on the command line, but
does not warn about built-in stub files. These command-line options turn the warnings on or off (respectively) for
all stub files.

The @NoStubParserWarning annotation on a package or type in a stub file causes no warning to be issued for
that package or type, regardless of the command-line options.

—AstubWarnIfNotFoundIgnoresClasses Modifies the behavior of ~AstubWarnIfNotFound to report only
missing methods/fields, but ignore missing classes, even if other classes from the same package are present.
Useful if a package spans more than one jar.

—AstubWarnIfRedundantWithBytecode Warn if a stub file entry is redundant with bytecode information.
The warning means that the stub file’s type is the same as the bytecode type, so that entry in the stub file has no
effect. You could remove the entry in the stub file to make it shorter, or you could add an annotation to the stub
file to make the entry have an effect.

—AstubWarnNote Issue a “note”, not a warning, for the ~-AstubWarn* command-line arguments. A warning may
prevents further compilation (depending on whether the -Werror command-line argument is passed), but a note
permits compilation to proceed.

Finally, use command-line option —AstubDebug to output debugging messages while parsing stub files, including
about unknown classes, methods, and annotations. This overrides the @NoAnnotationFileParserWarning annotation.

Problems parsing stub libraries

When using command-line option -AstubWarnIfNotFound, an error is issued if a stub file has a typo or the API
method does not exist.
Fix an error of the form

AnnotationFileParser: Method isLLowerCase (char) not found in type java.lang.Character

by removing the extra “L” in the method name.
Fix an error of the form

AnnotationFileParser: Method enableForegroundNdefPush (Activity,NdefPushCallback)
not found in type android.nfc.NfcAdapter

by removing the method enableForgroundNdefPush(...) from the stub file, because it is not defined in class
android.nfc.NfcAdapter in the version of the library you are using.

34.6 Ajava files

There are two types of annotation files, which are files containing annotations that can be read by the Checker Framework.
Section [34.5] describes stub files, which are used by programmers and type system designers. This section dscribes
ajava files. Ajava files are typically read and written by tools, such as whole-program inference (see Section[33.2). This
section about ajava files is primarily of interest to the maintainers of such tools.

An ajava file is simply a valid Java source file. The Checker Framework reads its annotations. (This includes
annotations that are written on anonymous and local classes — annotations in such locations are ignored in stub files.)

34.6.1 Using an Ajava file

The -Aajava command-line argument works like -Astubs (see Section[34.5.1)). It takes a colon-separated list of files
and directories containing ajava files, which end in the .ajava extension.
For example:

226

javac -processor org.checkerframework.checker.interning.InterningChecker \
-Aajava=path/to/String.ajava:ajavadir MyFile.java MyOtherFile.java ...
If there’s an annotation in both a source file and the corresponding a source file, the Checker Framework uses the
greatest lower bound, as with the -AmergeStubsWithSource option.

34.6.2 Corresponding source files and ajava files

If the Checker Framework reads both a source file and an ajava file that corresponds to it, then the source file and the
ajava file must have a specific relationship to one another.

Names of ajava files

The ajava file must either (1) be found below one of the arguments to ~Aajava, in a subdirectory matching its package
name, or (2) be unambiguously specified directly with its full path. A pair of .ajava files are specified ambiguously if
one of their fully-qualified names is a substring of the other, and both are specified as .ajava files (rather than being
found under directories). For example, if the -Aa java argument was -Rajava= /foo/Bar.ajava: /baz/foo/Bar.ajava,
the two . ajava files would be considered ambiguous and a ambiguous.ajava warning would be issued. Files found
under a directory are always unambiguous, because their file structure must match their package name; the solution to a
ambiguous.ajava warning is to convert the specific files in the ~Aajava argument to directories.

The ajava file must be named ClassName-checker.qualified.name.ajava where checker.qualified.name
is the fully qualified name of the checker that the ajava file’s annotations belong to.

For example, an ajava file with tainting annotations for a class outerpackage.innerpackage.MyClass would be
located in a subdirectory outerpackage/innerpackage and it would be named MyClass-org.checkerframework.checker.taintin

Contents of an ajava file
The ajava file must contain the same source code as the source file with the following exceptions:

e The two may differ in annotations.

e The two may have different import statements.

e The ajava file may have explicit receivers where the source file doesn’t. If a source file has a method declaration
void myMethod (), the ajava file might contain void myMethod (MyClass this) orvoid myMethod (@Interned
MyClass this).

e The ajava file may have explicit type bounds that are implicit in the source file. If a source file has a type argument
?, the ajava file might contain ? extends Object or ? extends @Nullable Object.

Inserting annotations from ajava files

The InsertAjavaAnnotations. java program inserts annotations from ajava files into Java files. This can be used
to insert the annotations inferred by whole program inference into the source code of a program, similarly to the
insert-annotations-to-source script from the Annotation File Utilities project.

Its arguments are a directory containing ajava files and a directory containing Java files. The checker. jar file must
be in the classpath. Here is an example invocation:

java -cp $CHECKERFRAMEWORK/checker/dist/checker.jar \
org.checkerframework.framework.ajava.InsertAjavaAnnoations \
<path-to-ajava-files> <path-to-java-files>

34.7 Troubleshooting/debugging annotated libraries

Sometimes, it may seem that a checker is treating a library as unannotated even though the library has annotations. The
compiler has a flag that may help you in determining which library files are read.

227

https://checkerframework.org/annotation-file-utilities/#insert-annotations-to-source
https://checkerframework.org/annotation-file-utilities/

-verbose Outputs info about compile phases — when the compiler reads/parses/attributes/writes any file. Also
outputs the classpath and sourcepath paths.

A syntax error in a stub file or the annotated JDK can lead to the file being silently ignored. A typo in an annotation
name, or a missing import statement, can lead to annotations being silently ignored.

228

Chapter 35

How to create a new checker

This chapter describes how to create a checker — a type-checking compiler plugin that detects bugs or verifies
their absence. After a programmer annotates a program, the checker verifies that the code is consistent with the
annotations. If you only want to use a checker, you do not need to read this chapter. People who wish to edit
the Checker Framework source code or make pull requests should read the Checker Framework Developer Manual
(https://checkerframework.org/manual/developer-manual.html).

Writing a simple checker is easy! For example, here is a complete, useful type-checker:

import java.lang.annotation.Documented;

import java.lang.annotation.Target;

import java.lang.annotation.ElementType;

import org.checkerframework.common.subtyping.qual.Unqualified;
import org.checkerframework.framework.qual.SubtypeOf;

@Documented

@Target ({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
@SubtypeOf (Unqualified.class)

public @interface Encrypted {}

This checker is so short because it builds on the Subtyping Checker (Chapter 28)). See Section [28.2] for more
details about this particular checker. When you wish to create a new checker, it is often easiest to begin by building it
declaratively on top of the Subtyping Checker, and then return to this chapter when you need more expressiveness or
power than the Subtyping Checker affords.

Three choices for creating your own checker are:

e Customize an existing checker. Checkers that are designed for extension include the Subtyping Checker
(Chapter 28] page [165)), the Accumulation Checker (Chapter [36] page 253)), the Fake Enumeration Checker
(Chapter[9] page[77), and the Units Checker (Chapter[I9} page[I33).

e Follow the instructions in this chapter to create a checker from scratch. This enables creation of checkers that are
more powerful than customizing an existing checker.

e Copy and then modify a different existing checker — whether one distributed with the Checker Framework or a
third-party one. You can get tangled up if you don’t fully understand the subtleties of the existing checker that
you are modifying. Usually, it is easier to follow the instructions in this chapter. (If you are going to copy a
checker, one good choice to copy and modify is the Regex Checker (Chapter[I3] page[I06). A bad choice is the
Nullness Checker (Chapter 3] page[30), which is more sophisticated than anything you want to start out building.)

You do not need all of the details in this chapter, at least at first. In addition to reading this chapter of the manual,
you may find it helpful to examine the implementations of the checkers that are distributed with the Checker Framework.
The Javadoc documentation of the framework and the checkers is in the distribution and is also available online at
https://checkerframework.org/api/\

229

https://checkerframework.org/manual/developer-manual.html
https://checkerframework.org/api/

If you write a new checker and wish to advertise it to the world, let us know so we can mention it in Chapter 29}
page[I70]or even include it in the Checker Framework distribution.

35.1 How checkers build on the Checker Framework

This table shows the relationship among tools that the Checker Framework builds on or that are built on the Checker
Framework. You use the Checker Framework to build pluggable type systems, and the Annotation File Utilities to
manipulate . java and .class files.

Subtyping| Nullness Index Tainting | ... Your
Checker | Checker | Checker | Checker Checker
Base Checker Type Other
(enforces subtyping rules) inference tools
Checker Framework Annotation File Utilities
(enables creation of pluggable type-checkers) (.java ¢ .class files)
Java type annotations|syntax and classfile format
(no built-in semantics)

The Base Checker (more precisely, the BaseTypeChecker) enforces the standard subtyping rules. The Subtyping
Checker is a simple use of the Base Checker that supports providing type qualifiers on the command line. You usually
want to build your checker on the Base Checker.

35.2 The parts of a checker

The Checker Framework provides abstract base classes (default implementations), and a specific checker overrides
as little or as much of the default implementations as necessary. To simplify checker implementations, by default
the Checker Framework automatically discovers the parts of a checker by looking for specific files. Thus, checker
implementations follow a very formulaic structure. To illustrate, a checker for MyProp must be laid out as follows:

myPackage/
| qual/ type qualifiers
| MyPropChecker. java interface to the compiler
| MyPropVisitor.java [optional] type rules
| MyPropAnnotatedTypeFactory. java [optional] type introduction and dataflow rules

MyPropChecker. java is occasionally optional, such as if you are building on the Subtyping Checker. If you want to
create an artifact containing just the qualifiers (similar to the Checker Framework’s checker-qual artifact), you should
put the qual/ directory in a separate Maven module or Gradle subproject.

Sections describe the individual components of a type system as written using the Checker Framework:

[35.5] Type qualifiers and hierarchy. You define the annotations for the type system and the subtyping relationships
among qualified types (for instance, @NonNull Object is a subtype of @Nullable Object). This is also where
you specify the default annotation that applies whenever the programmer wrote no annotation and no other
defaulting rule applies.

[35.6]Interface to the compiler. The compiler interface indicates which annotations are part of the type system, which
command-line options and @SuppressWarnings annotations the checker recognizes, etc.

[35.7 Type rules. You specify the type system semantics (type rules), violation of which yields a type error. A type
system has two types of rules.

o Subtyping rules related to the type hierarchy, such as that in every assignment, the type of the right-hand-side
is a subtype of the type of the left-hand-side. Your checker automatically inherits these subtyping rules
from the Base Checker (Chapter 28), so there is nothing for you to do.

230

https://checkerframework.org/annotation-file-utilities/
https://checkerframework.org/jsr308/
../api/org/checkerframework/common/basetype/BaseTypeChecker.html

e Additional rules that are specific to your particular checker. For example, in the Nullness type system, only
references whose type is|@NonNull may be dereferenced. You write these additional rules yourself.

[35.8] Type introduction rules. You specify the type of some expressions where the rules differ from the built-in
framework rules.

Dataflow rules. These optional rules enhance flow-sensitive type qualifier inference (also sometimes called
“local variable type inference”).

35.3 Compiling and using a custom checker

You can place your checker’s source files wherever you like. One choice is to write your checker in a fork of the
Checker Framework repository https://github.com/typetools/checker-frameworkl Another choice is to write
it in a stand-alone repository. Here is a template for a stand-alone repository: https://github.com/typetools/
templatefora-checkerj at that URL, click the “Use this template” button.

Once your custom checker is written, using it is very similar to using a built-in checker (Section[2.2)): simply pass
the fully-qualified name of your BaseTypeChecker subclass to the -processor command-line option:

javac -processor mypackage.MyPropChecker SourceFile.java

Note that your custom checker’s .class files must be on the same path (the classpath or processorpath) as the Checker
Framework. Invoking a custom checker that builds on the Subtyping Checker is slightly different (Section [28.1).

35.4 Tips for creating a checker

To make your job easier, we recommend that you build your type-checker incrementally, testing at each phase rather
than trying to build the whole thing at once.
Here is a good way to proceed.

1. Write the user manual. Do this before you start coding. The manual explains the type system, what it guarantees,

how to use it, etc., from the point of view of a user. Writing the manual will help you flesh out your goals and the
concepts, which are easier to understand and change in text than in an implementation. Section[35.13] gives a
suggested structure for the manual chapter, which will help you avoid omitting any parts. Get feedback from
someone else at this point to ensure that your manual is comprehensible.
Once you have designed and documented the parts of your type system, you should “play computer”, manually
type-checking some code according to the rules you defined. During manual checking, ask yourself what
reasoning you applied, what information you needed, and whether your written-down rules were sufficient. It is
more efficient to find problems now rather than after coding up your design.

2. Implement the type qualifiers and hierarchy (Section[35.5).

Write simple test cases that consist of only assignments, to test your type hierarchy. For instance, if your type
hierarchy consists of a supertype @UnknownSign and a subtype @NonNegative, then you could write a test case
such as:

void testHierarchy (@QUnknownSign int us, @NonNegative int nn) {
@UnknownSign int a = us;
@UnknownSign int b = nn;
// :: error: assignment
@NonNegative int ¢ = us; // expected error on this line
@NonNegative int d = nn;

}

Type-check your test files using the Subtyping Checker (Chapter 28] page[T63)).

3. Write the checker class itself (Section [35.6).
Ensure that you can still type-check your test files and that the results are the same. You will not use the Subtyping
Checker any more; you will call the checker directly, as in

231

../api/org/checkerframework/checker/nullness/qual/NonNull.html
https://github.com/typetools/checker-framework
https://github.com/typetools/templatefora-checker
https://github.com/typetools/templatefora-checker

javac -processor mypackage.MyChecker Filel.java File2.java ...

. Test infrastructure. If your checker source code is in a clone of the Checker Framework repository, integrate your
checker with the Checker Framework’s Gradle targets for testing (Section[35.11). This will make it much more
convenient to run tests, and to ensure that they are passing, as your work proceeds.

. Annotate parts of the JDK, if relevant (Section [35.10).

Write test cases for a few of the annotated JDK methods to ensure that the annotations are being properly read by
your checker.

. Implement type rules, if any (Section [35.7). (Some type systems need JDK annotations but don’t have any
additional type rules.)

Before implementing type rules (or any other code in your type-checker), read the Javadoc to familiarize yourself
with the utility routines in the org.checkerframework. javacutil package, especially AnnotationBuilder)
AnnotationUtils,|[ElementUtils, TreeUtils, TypeAnnotationUtils, and TypesUtils. You will learn how
to access needed information and avoid reimplementing existing functionality.

Write simple test cases to test the type rules, and ensure that the type-checker behaves as expected on those test
files. For example, if your type system forbids indexing an array by a possibly-negative value, then you would
write a test case such as:

void testArrayIndexing(String[] myArray, @UnknownSign int us, @NonNegative int nn) {
myArray[us]; // expected error on this line
myArray[nn];

}

. Implement type introduction rules, if any (Section [35.8).
Test your type introduction rules. For example, if your type system sets the qualifier for manifest literal integers
and for array lengths, you would write a test case like the following:

void testTypelntroduction(String[] myArray) {
@NonNegative nnl = -1; // expected error on this line
@NonNegative nn2 = 0;
@NonNegative nn3 = 1;
@NonNegative nn4 = myArray.length;

}

. Optionally, implement dataflow refinement rules (Section [35.9).
Test them if you wrote any. For instance, if after an arithmetic comparison, your type system infers which
expressions are now known to be non-negative, you could write a test case such as:

void testDataflow (@UnknownSign int us, @NonNegative int nn) {
@NonNegative nn2;
nn2 = us; // expected error on this line
if (us > j) {
nn2 = us;
}
if (us >= j) {
nn2 = us;
}
if (3 < us) {
nn2 = us;
}
if (§J <= us) {
nn2 = us;
}

nn = us; // expected error on this line

232

../api/org/checkerframework/javacutil/AnnotationBuilder.html
../api/org/checkerframework/javacutil/AnnotationUtils.html
../api/org/checkerframework/javacutil/ElementUtils.html
../api/org/checkerframework/javacutil/TreeUtils.html
../api/org/checkerframework/javacutil/TypeAnnotationUtils.html
../api/org/checkerframework/javacutil/TypesUtils.html

35.5 Annotations: Type qualifiers and hierarchy

A type system designer specifies the qualifiers in the type system (Section [35.5.1)) and the type hierarchy that relates
them. The type hierarchy — the subtyping relationships among the qualifiers — can be defined either declaratively
via meta-annotations (Section [35.5.2), or procedurally through subclassing QualifierHierarchy|or TypeHierarchy

(Section 353.3.3).

35.5.1 Defining the type qualifiers

Type qualifiers are defined as Java annotations. In Java, an annotation is defined using the Java @interface keyword.
Here is how to define a two-qualifier hierarchy:

package mypackage.qual;

import
import
import
import
import
import
import
/**

* The
*

java
java
java
java
java

.lang.
.lang.
.lang.
.lang.
.lang.

annotation
annotation

.Documented;

.ElementType;
annotation.
annotation.
annotation.
org.checkerframework.
org.checkerframework.

Retention;

RetentionPolicy;

Target;
framework.qual.DefaultQualifierInHierarchy;
framework.qual.SubtypeOf;

run-time value of the integer is unknown.

* (@checker_framework.manual #nonnegative-checker Non-Negative Checker

*/

@Documented
@Retention (RetentionPolicy.RUNTIME)

@Target ({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
@SubtypeOf ({})

@DefaultQualifierInHierarchy

public @interface UnknownSign {}

package mypackage.qual;

import
import
import
import
import
import
import

/**

java
java
java
java
java

.lang.
.lang.
.lang.
.lang.
.lang.

annotation
annotation
annotation
annotation

* Indicates that the value

*

.Documented;
.ElementType;
.Retention;
.RetentionPolicy;
annotation.
org.checkerframework.
org.checkerframework.

Target;
framework.qual.LiteralKind;
framework.qual.SubtypeOf;

is greater than or equal to zero.

* (@checker_framework.manual #nonnegative-checker Non-Negative Checker

*/

@Documented
@Retention (RetentionPolicy.RUNTIME)

@Target ({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
@SubtypeOf ({UnknownSign.class})

public @interface NonNegative {}

The |@SubtypeOf| meta-annotation indicates the parent in the type hierarchy.

233

../api/org/checkerframework/framework/type/QualifierHierarchy.html
../api/org/checkerframework/framework/type/TypeHierarchy.html
../api/org/checkerframework/framework/qual/SubtypeOf.html

The @Target meta-annotation indicates where the annotation may be written. All type qualifiers that users can
write in source code should have the value ElementType.TYPE_USE and optionally with the additional value of
ElementType.TYPE_PARAMETER, but no other Element Type values.

The annotations should be placed within a directory called qual, and qual should be placed in the same direc-
tory as your checker’s source file (unless you are creating multiple distribution artifacts, one for your checker and
one for its qualifiers). The Checker Framework automatically treats any annotation that is declared in the qual pack-
age as a type qualifier. (See Section[35.6.1|for more details.) For example, the Nullness Checker’s source file is located at
.../nullness/NullnessChecker. java. The @NonNull qualifier is definedinfile . . ./nullness/qual/NonNull. java.

Your type system should include a top qualifier and a bottom qualifier (Section [35.5.7). The top qualifier is
conventionally named CheckerNameUnknown. Most type systems should also include a polymorphic qualifier
€PolyMyTypeSystem (Section[3